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Abstract

Prerequisite chain learning helps people acquire new knowledge efficiently. While
people may quickly determine learning paths over concepts in a domain, finding
such paths in other domains can be challenging. We introduce Domain-Adversarial
Variational Graph Autoencoders (DAVGAE) to solve this cross-domain prerequisite
chain learning task efficiently. Our novel model consists of a variational graph
autoencoder (VGAE) and a domain discriminator. The VGAE is trained to predict
concept relations through link prediction, while the domain discriminator takes
both source and target domain data as input and is trained to predict target domain
labels. Most importantly, this method only needs simple homogeneous graphs as
input, unlike the current state-of-the-art model which requires the construction of
heterogeneous graphs. We evaluate our model on the LectureBankCD dataset, and
results show that our model outperforms recent graph-based benchmarks while
using only 1/10 of graph scale and 1/3 of computation time.

1 Introduction

A prerequisite is defined as a concept which must be learned prior to another concept. Knowing
prerequisite relationships between concepts helps determine learning paths for students who wish
to acquire new knowledge. [1, 2, 3]. Most existing work on prerequisite chain learning is limited
to a single domain. [4, 5, 6]. More recently, [7] introduced the task of cross-domain prerequisite
chain learning. This task is useful for development of educational resources, intelligent search engine
rankings, and other services for people who may have an excellent background in one domain,
such as natural language processing (NLP), and wish to learn concepts in a new domain, such as
Bioinformatics (BIO). These two domains share common fundamental concepts: machine learning
basics, time-series data, statistics, etc. Given the prerequisite chains in a source domain, it is possible
to transfer the knowledge to learn prerequisite chains in a target domain. [7] proposed the CD-VGAE
(cross-domain variational graph autoencoder) model to apply domain transfer and infer target concept
relations.

However, CD-VGAE was trained on a complex graph that contains many resource nodes and concept
nodes from both the source and target domains, making it limited in scalability. A known challenge
of applying graph neural networks in practice is the difficulty of scaling these models to large graphs.
[8, 9]. We seek to develop a model that can be trained on a much smaller graph than the CD-VGAE
model, so that the model can be more practical in real-world applications. Specifically, our model is
trained on graphs with concept nodes only.

Adversarial methods [10] have been applied to NLP tasks that involve multilingual or multi-domain
scenarios [11, 12, 13]. Such methods typically introduce a domain loss to a neural network in
order to learn domain-invariant features for unsupervised domain adaptation. However, there has
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Domain # Files # Concepts # Pos. Relations
NLP 1,717 322 1,551
CV 1,041 201 871
BIO 148 100 234

Table 1: Statistics of the three domains from LectureBankCD [7]: Files (resource files: lecture slides);
Pos. Relations (positive prerequisite relations).

been limited research in training adversarial networks on graphs. The only existing work is the
adversarially regularized variational graph autoencoder (ARVGA) model [14] , which learns robust
graph embeddings by reconstructing graph structure. We introduce a variant adversarial framework
to solve cross-domain prerequisite chain learning.

Our contributions are two-fold. First, we propose domain-adversarial variational graph autoencoders
(DAVGAE) to perform unsupervised cross-domain prerequisite chain learning. Second, we offer two
ways to construct the concept graph: cross-domain and single-domain. The single-domain method
further reduces the scale of the training graph and improves performance. We conduct comprehensive
evaluations and show that our model surpasses the state-of-the-art (SOTA) performance while saving
space complexity by up to 10 times and training time by up to 3 times. Our code will be made public.

2 Dataset and Task Definition

The LectureBankCD [7] dataset consists of concepts, resources (lecture slides from top universities),
and manually annotated prerequisite relations between concepts, in three domains: NLP, BIO and CV
(computer vision). We show the statistics of the dataset in Table 1. We follow the same experimental
setting as [7], treating NLP as the source domain and BIO and CV as target domains.

We define cross-domain prerequisite chain learning as a binary classification problem. Given a source
domain and a target domain, there are a number of concept pairs (p, q) in each domain. The label for
the concept pair y is 1 if concept p is a prerequisite of concept q and 0 otherwise. We focus on the
unsupervised transfer learning setting, in which the labels of the source domain ysrc are known, but
those of the target domain ytgt are unknown.

3 Methodology

We propose the Domain Adversarial Variational Graph Autoencoders (DAVGAE) for unsupervised
cross-domain prerequisite chain learning. The model architecture is shown in Figure 1.

Concept Graph Construction We define a concept graph G = (X,A) as the input to the model.
X is the set of node features and A is the adjacency matrix which indicates whether prerequisite
relations exist between concept pairs. If p→ q, we define Ap,q = 1 and Aq,p = 1. To obtain X , we
follow the same approach from [7] to train Phrase2Vec (P2V) [15] node embeddings: we extract free
text from LectureBankCD lecture slides then train a P2V model to encode concepts.

We propose two ways to build the concept graph: cross-domain and single-domain. In the cross-
domain one, all concept nodes are modeled in a single graph, and X consists of concepts from the
source and target domain. We build the adjacency matrix A using two information sources: relations
between source domain concept nodes given in LectureBankCD during training, plus additional
relations from cosine similarity or pairwise mutual information (PMI) of node embeddings between
concept pairs. We calculate cosine similarity between all possible concept pairs, but only PMIs
between source concepts and target concepts.

In the single-domain method, we train on two single-domain concept graphs to further reduce the
space complexity during training: source graph Gsrc and target graph Gtgt, in which X of the two
graphs only contains concept node features from the source and target domains respectively. In Gsrc,
A values consists of two parts: labeled relations between concept node pairs, and additional relations
computed using cosine similarity. In contrast, the initial A in Gtgt only comes from cosine similarity.
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Figure 1: DAVGAE model.

DAVGAE The VGAE model [16] contains a graph neural network (GCN) encoder [17] and an inner
product decoder. The loss of VGAE is defined as:

Lvgae = Eq(Z|X,A)[log p(A | Z)]−
KL[q(Z | X,A)‖p(Z)],

(1)

where the first term indicates the reconstruction loss, and the second term represents the KL Diver-
gence between the hidden layer representation Z and a normal distribution. It is possible to replace
the GCN encoder with other architectures, such as graph attention networks (GAT) [18].

Domain-adversarial training is an established approach to learn representations for domain adaptation
[19], but it has rarely been applied to graphs before to the best of our knowledge. To force the
VGAE encoder to learn domain-invariant features of concept nodes, we add a domain discriminator
module to predict which domain each node in the hidden layer representation Z belongs to. We use a
two-layer neural network (NN) to predict domain labels: 1 if the node comes from the source domain
and 0 otherwise. Thus, the discriminator loss Ldis is defined as a cross-entropy loss for domain
prediction. The total loss of the DAVGAE model is:

L = Lvgae + Ldis (2)

We train DAVGAE at the graph level. In each epoch, we feed it with either the cross-domain graph or
one of the single-domain concept graphs.

Link Prediction Since the prerequisite prediction should be asymmetric, it is not suitable to use
an inner product decoder like the original VGAE did. Instead, we use DistMult [20] to predict the
link between a concept pair (p, q) using a hidden layer representation (Zp, Zq). Specifically, we
reconstruct the adjacency matrix Â by learning a trainable weight matrix R, such that Â = ZᵀRZ.
Finally, we apply a Sigmoid function to determine positive/negative label on the value of Âp,q .

4 Evaluation

We apply the same split on the data as two previous works [2, 7]. Positive relations are divided
into 85% training, 5% validation, and 10% testing. Negative relations are sampled randomly to
ensure balance between positive and negative relations. In Table 2, we report average scores over five
randomly seeded splits.

Unsupervised Baseline Models We establish unsupervised baselines using both machine learning
classifiers and graph embedding methods. For each method, we experiment with P2V [15] and BERT
concept embeddings pretrained on our corpus. CLS + BERT/P2V: We adapt the Machine Learning
baselines from an existing work [7], concatenating paired concept embeddings and training a clas-
sifier. GraphSAGE+BERT/P2V: We adapt GraphSAGE [21] to generate node embeddings which
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NLP→CV NLP→BIO
Method F1 Precision Recall F1 Precision Recall

Unsupervised Baseline Models
CLS + BERT 0.4277 0.5743 0.3419 0.3930 0.7481 0.2727
CLS + P2V 0.4881 0.6106 0.4070 0.2222 0.6000 0.1364
GraphSAGE + P2V [21] 0.5342 0.5085 0.5515 0.5283 0.5177 0.5287
GraphSAGE + BERT [21] 0.5102 0.3611 0.5105 0.4736 0.4065 0.5180
VGAE + BERT [2] 0.5885 0.5398 0.6488 0.6011 0.6185 0.5909
VGAE + P2V [2] 0.6202 0.5368 0.7349 0.6177 0.6521 0.6091

Baseline with Extra Resource Nodes
CD-VGAE + BERT [7] 0.6391 0.5441 0.7884 0.6289 0.6425 0.6364
CD-VGAE + P2V [7] 0.6754 0.5468 0.8837 0.6512 0.6667 0.6364

Cross-domain Concept Graph
GAT [18] 0.6064 0.5281 0.7172 0.6257 0.5969 0.6609
GAT + cos 0.6276 0.5276 0.7793 0.6336 0.5644 0.7304
GAT + cos + DAVGAE (ours) 0.6251 0.5613 0.7218 0.6396 0.6557 0.6348
GCN [17] 0.5951 0.5361 0.6713 0.6319 0.6109 0.6609
GCN + cos 0.6318 0.5379 0.7655 0.6174 0.5991 0.6435
*GCN + cos + DAVGAE (ours) 0.6321 0.5661 0.7195 0.6421 0.5932 0.7130

Single-domain Concept Graph
GAT [18] 0.5573 0.4897 0.7609 0.5756 0.5588 0.6348
GAT + cos 0.6287 0.5213 0.8023 0.5587 0.5248 0.6261
GAT + cos + DAVGAE (ours) 0.6356 0.5782 0.7149 0.6545 0.6024 0.7217
GCN [17] 0.5888 0.5169 0.6920 0.5304 0.5218 0.6348
GCN + cos 0.6232 0.5455 0.7287 0.6117 0.5599 0.6783
*GCN + cos + DAVGAE (ours) 0.6771 0.5734 0.8322 0.6738 0.6559 0.6957

Table 2: Evaluation results on two target domains. Underlined scores are the best among the baseline
models.

Experiment Model # Graph node Computational time

NLP→CV CD-VGAE 3,281 127.5s
Ours 322 47.1s

NLP→BIO CD-VGAE 2,287 71.6s
Ours 322 30.2s

Table 3: Comparison of graph scale and computation time. Computation time includes 200 epochs of
training and one inference run. Ours: GCN+cos+DAVGAE.

are passed into DistMult. Model inputs include the BERT/ P2V embeddings of the source and target
domain concepts, as well as an adjacency matrix constructed from annotations of source domain pre-
requisite relations and cosine similarities of target domain concept embeddings. VGAE+BERT/P2V:
We use a VGAE model [2] to predict concept pair relations. All baseline models are trained on the
NLP domain and applied directly on the target domains, so we call them unsupervised baselines.

Baseline with Extra Resource Nodes The recent CD-VGAE model from [7] constructs a cross-
domain concept-resource graph to predict target domain prerequisite relations via optimized VGAEs
[16].

Cross-domain, Single-domain Concept Graph In both groups, we experiment with GAT and GCN
(in light gray shaded color) graph encoders, as well as cosine similarity for additional edge values
when building the input graph. GAT works better in some settings, but the best performing model is
GCN+cos+DAVGAE in terms of F1 score, across both CV and BIO domains. The results suggest
that DAVGAE does not require a complex graph encoder like GAT. A simple GCN is enough to train
domain-invariant features. The same trend is observed when DAVGAE is trained on the single-domain
concept graph setting. No matter whether we train on a cross-domain or single-domain concept
graph, DAVGAE consistently improves upon comparable unsupervised baselines. Furthermore, a
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Domain Graph Path
CV Ground Truth object recognition, robotics, artificial intelligence,..., image

processing, feature extraction, autonomous driving
DAVGAE object recognition, video classification, autonomous driving

BIO Ground Truth DNA, motif discovery
DAVGAE DNA, dynamic programming, RNA secondary structure, en-

ergy minimization, decision trees, sampling, motif discovery

Table 4: Case studies of concept paths.

DAVGAE trained on a single-domain concept graph not only achieves better performance compared
to one trained on a cross-domain concept graph, but it also outperforms CD-VGAE. Overall, our best
performing model is GCN+cos+DAVGAE (marked with *).

CD-VGAE is a competitive baseline, but it shows limited scalability as it trains on a larger graph and
requires longer time for training. We list detailed numbers in Table 3. For example, in the NLP→CV
experiment, our best model is trained on a graph with 322 nodes while CD-VGAE constructs a large
graph of 3,281 nodes. In the best case, DAVGAE requires only 10% of the graph size and one-third
of the training time as CD-VGAE does.

5 Analysis

We provide quantitative analysis and case studies on selected domains to shed light on the edges
predicted by our model.

5.1 Quantitative Analysis

We compare our best model with the ground truth and another baseline model (CLS+P2V). We first
recover the concept graph of the CV domain and review the degree of each concept node. Our model
predicts 1,151 positive edges while the base model predicts 527. There are 871 in the ground truth.
In general, our model has higher recall than the selected baseline. Higher recall is beneficial because
we’d rather students learn extra concepts than miss important concepts.

5.2 Case Studies

In the concept graph recovered by DAVGAE, we observe that there are a few concept pairs which
are connected by more than one path. The same is true for the ground truth graph. When there are
cycles in the graph, finding all possible prerequisite paths becomes especially challenging. With this
in mind, we conduct case studies on randomly selected paths.

In the CV domain, with random selection, there are usually 5-10 concepts in each path within the
ground truth graph. The concept graph recovered by our model tends to have more and longer paths
because more positive edges are predicted. In Table 4, we compare paths from the ground truth
concept graph and our recovered graph. Both start with object recognition (colored blue) and end
with autonomous driving (colored orange), with concepts linked from top to bottom. There exists
a long path in the ground truth; however, but our model predicts a shorter one, indicating another
possible learning path. In BIO, we show paths from DNA→ motif discovery. There are 8 paths found
in the ground truth with an average path length of 4; in comparison, the 8 paths found in our model
prediction has an average length of 10.63. We show the shortest path between the selected concepts
in the ground truth and DVGAE concept graphs. Our model this time predicts more concepts along
the path than the ground truth.

We include two random concept paths from CV and BIO in Table 5. Both are predictions from our
best performing model. In the left column, our model predicts many relations accurately in the CV
domain, such as video classification→autonomous driving, video and image augmentation→image
generation and image generation→image to image translation. However, a few concepts may not
be predicted in the correct path, e.g. gibbs sampling. Similarly, in the right column, we observe
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CV BIO

optical flow BLAST
trajectory prediction hardy-weinberg equilibrium

eye tracking ChIP-seq
camera localization gene finding

gibbs sampling multivariate linear model
shading analysis graph theory

background modeling and update transcription
motion detection and tracking transcription factor
action or gesture recognition position weight matrix

video classification yeast 2-hybrid
autonomous driving energy minimization

remote sensing markov clustering
crowd counting
graph rendering

image processing
video and image augmentation

image generation
image to image translation

Table 5: A random concept path from CV (left column) and BIO (right column).

correct prerequisite relations in the BIO domain, such as transcription→transcription factor and
ChIP-seq→gene finding.

6 Conclusion

In this paper, we propose the DAVGAE model to solve cross-domain prerequisite chain learning
efficiently. DAVGAE outperforms unsupervised baselines trained on concept graphs by a large
margin. It also outperforms an unsupervised SOTA model trained on a concept-resource graph, while
significantly reducing computation space and time.
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