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Abstract

Previous work in continual learning for Named Entity Recognition (NER) relies
on the assumption that there exists abundance of labeled data in the new datasets
arriving over time. This assumption is usually unrealistic since the token-level
annotations required by NER training are laborious and scarce, especially for new
(unseen) classes. We present the first work to study continual few-shot learning
for NER, which is more general, but as a result, more challenging, compared to
continual learning for NER. To alleviate the problem of catastrophic forgetting in
continual few-shot learning, we reconstruct synthetic training data of the previously
seen classes from the NER model and further develop a framework that distills from
the existing model with both synthetic data, and real data from the current training
set. Experimental results on several NER benchmarks show that our approach
achieves significant improvements over existing baselines.

1 Introduction

Existing Named Entity Recognition (NER) models are usually trained on a large scale dataset with
predefined entity classes, then deployed for entity extraction on the test data without further adaptation
or refinement. However, real-world applications are usually dynamically evolving, i.e., NER models
may be expected to continually learn new entity classes as required by the users, but classes that were
not initially available for training. In this case, one challenge is that the training data of old entity
classes may not be available due to privacy concerns or memory limitations [7]. Then, the model
can easily degrade in terms of the performance of existing classes when being fine-tuned with only
annotations of new entity classes, i.e., catastrophic forgetting. In addressing this problem, previous
work in continual learning for NER [9] regularizes the current model by distilling from the previous
model trained on old (existing) classes, using text from the training dataset of new classes. However,
this requires abundance of data in the new dataset being used for distillation. Such an assumption is
usually unrealistic since the token-level annotations required by NER training are labor-consuming
and scarce, especially for the new unseen classes. In this paper, we study a more realistic setting, i.e.,
continual few-shot learning for NER, where the model (i) is continually learning on new classes with
few annotations, and (ii) does not require access to training data for old classes.

Compared with the setting of continual learning, continual few-shot learning for NER is more
challenging scenario. First, few-shot datasets in continual few-shot learning may not contain enough
information for the trained model to generalize during testing. Second, it is more challenging to solve
the catastrophic forgetting problem in continual few-shot learning. In continual learning for NER [9],
the same training sequence may contain entities of different classes. Therefore, when the training
dataset for new classes is sufficiently large, its context, i.e., words labeled as not from entities of
new classes, will likely also contain abundant entities of the old classes. That is, the new training
data can be regarded as an unlabeled replay dataset of the existing entity classes. With such a replay,
catastrophic forgetting can be simply addressed by distilling from the previous model [9]. However,
in continual few-shot learning, there may not exist sufficient (if any) entities of the old classes for
distillation with the only few samples in the current dataset.
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In this paper, we propose a framework to enable continual few-shot learning for NER. Provided
there is not enough data samples from old classes for replay with few-shot datasets, compared with
the setting of continual learning for NER, we consider generating synthetic replay of old classes
by inverting the NER model. Specifically, given the current model that has been trained on the old
classes, we optimize the token embeddings of the synthetic data being generated, so that predictions
from the existing model can contain old entity classes. To ensure the synthetic (reconstructed) data
to be realistic, we propose to adversarially match the hidden features of tokens from the synthetic
data and those from the readily available training text for new classes. Consequently, the synthetic
data will encourage knowledge preservation of old classes, considering that it is obtained from the
previous model that was trained on the old classes. Further, since the synthetic data can be constructed
in a large amount, e.g., thousands of sentences, it will provide more diverse context for training of the
current model, thus preventing over fitting to few samples of the new classes. With the generated
synthetic data, we propose a framework that trains the NER model with annotations of the new
classes, while distilling from the previous model with both the synthetic data and real text from the
new training data. Our contributions are summarized as follows:

• To the best of our knowledge, this is the first work to study continual few-shot learning for
NER, which is more practical and challenging, compared with continual learning for NER.

• We approach the problem by proposing a framework that distills from the existing model
with both, real data of new entity classes and synthetic data reconstructed from the model as a
replay of old entity classes. Experimental results demonstrate that our approach significantly
improves over existing baselines.

2 Problem Definition

Assume there is a stream of NER datasets D1, . . . , Dt, at time steps t and annotated with disjoint
entity classes, where Dt = {(Xt

i , Y
t
i )}
|Dt|
i=1 , for t ≥ 1 contains ct entity classes. Here Xt

i =
[xti,1, · · · , xti,Ni

] and yti = [yti,1, · · · , yti,Ni
] are the NER token and label sequences, respectively, with

length Ni, and |Dt| is the size of the dataset. Dataset D1 is the base dataset, assumed of reasonably
large size for the base classes. The datasets {Dt}t≥1 are the few-shot datasets with about K samples
for each class. In continual few-shot learning, the NER model will be incrementally trained with
D1, D2, . . ., over time, with data from Dt only available at the tth time step. Figure 1(a) shows
an example of annotations for different steps of continually few-shot learning on classes of PER,
LOC, and TIME. After being trained with Dt, the model will be evaluated jointly on all entity classes
encountered in D1, · · · , Dt, i.e., we do not learn separate prediction modules for each time step.

3 Framework for Training Without Forgetting

Following [1, 10], we employ the BERT-CRF model for NER training, which consists of a BERTbase

[3] encoder with a linear projection and a conditional random field (CRF) [6] layer for prediction.
For time step t > 1, the model M t is expected to learn about the new classes from Dt, while not
forgetting the knowledge from {Dk}t−1k=1. Assume we have already obtained a synthetic dataset

Dt
r = {Et,r

i , Y t,r
i }

|Dt
r|

i=1 of previous entity classes from {Dk}t−1k=1, where Et,r
i = [et,ri,1, · · · , e

t,r
i,N ] and

Y t,r
i = [yt,ri,1 , · · · , y

t,r
i,N ] are the reconstructed token embeddings and reference label sequence that

contains annotations of only old classes. We will discuss the construction of the synthetic Dt
r below.

Given the current training data Dt and M t−1 that has been trained on Dt−1, we propose to train M t

by distilling from M t−1 with both the real data from Dt and synthetic data from Dt
r.

Distilling with Real Data Dt: The distillation from M t−1 to M t involves matching the output
distributions between M t to M t−1. However, let X be an input sequence from Dt at step t, the
CRF layer outputs correspond to a sequence-level distribution PMt(Y |X), i.e., probabilities for all
possible label sequences of X , the cardinality of which, grows exponentially large with the length
of X . Following the current state-of-the-art approach of NER distillation [12], we approximate the
sequence-level output distribution of CRF with only its top S predictions. Specifically, for model
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Input Sequence:

PER       O             O              O        O       O      O       O     Step 1	:

Prediction : PER       O         LOC            O        O        O   TIME   O            

Emily    from    California    was    born    in    1990      .

O          O          LOC            O        O       O      O       O     

O          O            O               O        O       O   TIME   O     

Step 2	:

Step 3	:

(a)

London    was    attacked    in    1943    .

𝑀!

(1) Masking the position 
of TIME

𝑌"! : LOC    O    O    O    O    [X]    O            

……

Top K predictionsO      O      O        O    O    TIME O              
𝑝!
𝑝"
𝑝#

Probabilities of 
each prediction

……

𝑝!
𝑝"
𝑝#

(2) Copy
(3) 

Insert

(4) Train

Annotations
of step 3

𝑌"" : O      O     O    O    O    [X]    O            
𝑌"# : PER   O     O    O    O    [X]    O            

𝑀"

𝑌"!$ : LOC    O    O    O    O    TIME O            
𝑌""$ : O      O     O    O    O    TIME O            
𝑌"#$ : PER   O     O    O    O    TIME O            

(b)

Figure 1: (a)An example of annotations and expected model predictions in continual few-shot learning.
In our experiments, we do not assume the same sentence is shared by datasets from different time
steps. (b) Distilling with D3 of (a). M2 and M3 are models of step 2 and 3, respectively. We replace
predictions on the position of “1943” from M2 with “TIME” from D3 before training on M3.

M t−1, we have,

P̂Mt−1(Y |X) = [PMt−1(Ŷ1|X), · · · , PMt−1(ŶS |X), 1−
S∑

s=1

PMt−1(Ŷs|X)], (1)

where {Ŷs}Ss=1 are the top S most probable predictions of label sequence from M t−1. In this way,
the output from the CRF of M t−1 becomes tractable. However, M t still cannot be trained with such
an output from M t−1. This is because M t−1 was not trained with the new classes in Dt. Therefore,
when X is from Dt, M t−1 will have wrong predictions on the tokens labeled as being from entities
of new classes. In order to distill withM t−1, we propose a correction for {Ŷs}Ss=1. Figure 1(b) shows
an example of such a process. Specifically, on the positions of the sequence where Dt has labeled
as new classes, we replace the predictions in {Ŷs}Ss=1 with the annotations from Dt. We denote
the corrected set of predictions as {Ŷ c

s }Ss=1. For training of M t, we first calculate the predicted
distribution of M t with respect to {Ŷ c

s }Ss=1, as

P̂Mt(Y |X) = [PMt(Ŷ c
1 |X), · · · , PMt(Ŷ c

S |X), 1−
S∑

s=1

PMt(Ŷ c
s |X)], (2)

where we compute the predicted probabilities from M t with regard to {Ŷ c
s }Ss=1 from M t−1. Then,

M t can be trained by minimizing the cross entropy between P̂Mt−1(Y |X) and P̂Mt(Y |X) via

Lreal(Dt) = − 1

|Dt|
∑

X∈Dt

CE(P̂Mt−1(Y |X), P̂Mt(Y |X)), (3)

where CE(·, ·) is the cross entropy function. Note that the definition of O is different in M t−1 and
M t. Take Figure 1(b) as an example, the prediction of O in step 2 corresponds to both O and TIME
for step 3, since TIME is not in the target entity classes of step 2. However, we know that tokens
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annotated as O in step 3 are not TIME. Therefore, we can safely copy the prediction of O in {Ŷ c
s }Ss=1

from M2 for training of M3.

Distilling with Synthetic DataDt
r: Different from data fromDr, in which we know tokens annotated

as O are not from the new classes, data from Dt
r is reconstructed from M t−1 and only contains labels

for the previous classes. In this case, any token predicted with "O" from M t−1 can be potentially
labeled as O or the new classes by Mt. Therefore, with Dt

r, it is unclear how to correct the output
of CRF from M t−1, i.e. {Ŷs}Ss=1, for training of M t. Here, we resort to another approach that
decomposes the output from CRF, i.e., sequence level label distribution, into marginal label prediction
for each token, using the forward-backward method in [6]. For each token with embedding e, let
pte = [pte,O; p

t
e,Ct−1 ; pte,ct ] and pt−1e = [pt−1e,O ; pt−1e,Ct−1 ] be the predicted marginal distribution on the

token from M t and M t−1 with Ct−1 =
∑

k<t c
k. pte,O, p

t−1
e,O ∈ R are the probabilities for class O,

whereas pte,Ct−1 , p
t−1
e,Ct−1 ∈ RCt−1

are the probabilities for entity classes encountered up to step t− 1.

Further, pte,ct ∈ Rct are probabilities for the new classes in step t. We first collapse pte by computing
p̂te = [sum([pte,O; p

t
e,ct ]); p

t
e,Ct−1−1], where we merge the predictions of O and ct new classes. In

this way, p̂te will have the same dimension as pt−1e . Let Et
r be the set of token embeddings for all

tokens contained in Dt
r and KL(·||·) is the KL divergence. The distillation loss for Dt

r is

Lsyn(Dt
r) = Ee∈Et

r
KL(p̂te||pt−1e ), (4)

General Objective: The general objective of M t for training at step t is given by

Lt = Lreal(Dt) + αLsyn(Dt
r), (5)

where α is a parameter balancing training between real data from Dt and synthetic data from Dt
r.

4 Synthetic Data Reconstruction

Now we describe how to reconstruct Dt
r from M t−1. Given a randomly sampled label sequence Y

containing the old entity classes from {Dk}k<t, we seek to reconstruct the embedding sequence E
corresponding to its training data. In doing so, we randomly initialize embeddings E, then optimize
the parameters of E with gradient descent so that its output with M t−1 matches the expected label
sequence Y . Formally, we optimize E by minimizing the training loss of the CRF as

Lcrf = − logPMt−1(Y |E). (6)

One problem of such reconstruction is that the resulting synthetic E may not be realistic. Here, we
propose to encourage synthetic data to be more realistic by leveraging the real data from Dt.

Let hl,syn(Et
r) be the hidden state from the lth layer of the BERT encoder in M t−1, regarding the set

of synthetic token embeddings, Et
r, from Dt

r. Similarly, let hl,real(emb(Xt)) be the output hidden
states from the lth layer of M t−1, regarding the set of real tokens, Xt, from Dt. Moreover, emb(·)
is the embedding layer. We propose to adversarially match hl,syn(Et

r) and hl,real(emb(Xt)) so
that hidden states from the real and synthetic are not far away from each other. In this way, the
reconstructed embeddings from Dt

r are likely to be more realistic. Specifically, let F l be a binary
discriminator module, i.e., one layer linear projection with sigmoid output, whose inputs are the real
and synthetic the hidden states,

F l,∗ = argminF l−Eh∈hl,syn(Et
r)
logF l(h)− Eh∈hl,real(emb(Xt)) log(1− F l(h)),

Ll
adv = Eh∈hl,syn(Et

r)
log(1− F l,∗(h)). (7)

Consequently, the final loss for reconstructing Dt
r is

Lr = Lcrf + βLadv, (8)

where Ladv =
∑

l∈ls L
l
adv . ls = 2, 4, · · · , 12, i.e., we match every two layers of the BERT encoder

in M t−1. β is a balancing parameter.

Another problem we should consider is that the real data Dt and synthetic data Dt
r may contain

different sets of entity classes, i.e., the few-shot dataset Dt may not contain entities of old classes
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Table 1: 5-shot learning with CoNLL2003.

Method Step 1 Step 2 Step 3 Step 4 Avg ≥ 2

Continual NER 87.89 59.54 51.09 42.98 51.20

EWC++ 88.35 68.23 60.34 50.97 59.85

FSLL 88.35 68.49 61.66 52.71 60.95

AS-DFD 88.35 68.87 60.32 52.99 60.73

Ours (α = 0) 88.35 60.09 52.16 44.31 52.19

Ours (β = 0) 88.35 69.11 60.54 53.86 61.13

Ours (all tokens) 88.35 69.78 62.33 58.74 63.62

Ours 88.35 71.31 63.76 59.37 64.18

Table 2: 10-shot learning with CoNLL2003.

Method Step 1 Step 2 Step 3 Step 4 Avg ≥ 2

Continual NER 87.89 59.77 54.03 46.94 53.58

EWC++ 88.35 66.32 62.69 55.14 61.38

FSLL 88.35 68.34 63.59 56.00 62.71

AS-DFD 88.35 68.95 59.54 53.22 60.57

Ours (α = 0) 88.35 60.26 55.46 47.69 54.47

Ours (β = 0) 88.35 69.60 60.56 54.59 61.68

Ours (all tokens) 88.35 70.26 61.25 58.69 63.40

Ours 88.35 70.75 64.60 60.02 65.12

in Dt
r. In this case, for the token embeddings of old classes in Dt

r, s.t., {ei,j |yt,ri,j 6= O}, matching
the hidden states of these embeddings with those from Dt will distract these embedding from being
optimized into the entities of old classes, which we will show in the experiments. Therefore, we
overload the definition of Et

r in (4) by excluding embeddings of the old entity classes in Dt
r from

matching, i.e., Et
r = {ei,j |yt,ri,j = O}, while Xt contains all the real tokens from Dt. Algorithm 1 in

the Supplementary material shows the complete procedure for constructing Dt
r.

Since Dt
r contains entities of old classes from previous steps, distilling with Lsyn(Dt

r) will help
preserving knowledge of old entity classes, i.e., avoiding catastrophic forgetting, without accessing
the real data from previous steps. Additionally, with Dt

r, M t is no longer trained with only few
samples from Dt, thus is less likely to overfit. This is because Dt

r can be constructed in a relative
larger scale, e.g., several hundred sentences, within the computation limit. Compared with training
only with Dt, Dt

r provides more diverse text information for M t during training. Moreover, the
entity of old classes from Dt

r can be regarded as negative samples for training of the new classes in
Dt, reducing the confusion between old and new classes for M t during training.

5 Related Work
Continual Learning: [9] studies continual learning with different classes, building a unified NER
classifier for all the classes encountered over time. There are two problems regarding this method.
Firstly, [9] only works with a non-CRF-based model. Secondly, it assumes that a large amount of
data for the new classes is available, which is unrealistic since annotations for unseen classes are
usually scarce. In this work, we assume only few-shot datasets are available for the new classes, i.e.,
continual few-shot learning, which was proposed in [11], yet not studied in the context of NER.

Few-Shot Learning: The current state-of-the-art works on few-shot learning for NER can be
categorized as metric-learning-based method and data-augmentation-based method. The former
involves predicting by learning to compare token features with class prototypes [4] or stored tokens
from the query set [13]. These works build a separate prediction module for the target classes and
ignore the performance of base classes during evaluation, thus incompatible with continual learning.
On the other hand, [5] avoids overfitting of few-shot learning by augmenting with noisy or unlabeled
data. Our approach is similar to [5], in that we augment few-shot training of the current step with the
reconstructed data from the model of the previous step.

6 Experiments

6.1 Datasets

Following the previous work of continual learning for NER [9], we experiment with two datasets:
CoNLL2003 and Ontonote 5.0. Table 1 and 2 list the entity classes used for each step for continual
few-shot learning. CoNLL2003 contains 4 entity classes. We experiment with one entity class for
each step and consider the average performance of eight permutations of ordering as in [9].

Baselines and Ablation Study: We compare with the state-of-the art work of continual learning for
NER (Continual NER) [9].Additionally, we implement EWC++ [2] with α = 0, i.e., using weights
regularization to avoid forgetting instead of synthetic data from Dt

r. We also implement FSLL
[8], a state-of-the-art method of continual few-shot learning for image classification with metric
learning. We further include AS-DFD [7], the state-of-the-art method of data-free distillation in
text classification. Specifically, we construct Dt

r with the adversarial regularization described in
AS-DFD instead of (8). The ablation study also includes Ours (all tokens), which matches all the
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Figure 2: 5-shot continual few-shot learning for OntoNote 5.0 data. (a) and (b) are comparison with
baselines and ablation studies, respectively, for combination P1 (see Table 2 in the supplementary
material). Similarly, (c) and (d) are results for P2.

synthetic tokens in Dt
r with real tokens in Dt, instead of matching with only those labeled as O in

Dt
r, as described after eq (8).

6.2 Results of Continual Few-Shot Learning

Table 1 and 2 shows the F1 scores of 5-shot and 10-shot from different steps of continual few-shot
learning. Figure 2 shows the 5-shot results for OntoNote 5.0. Our methods outperforms all the
considered baselines. Especially, Continual NER [9] has the worst result among all the methods. This
is because the performance of Continual NER relies on a large amount of data from Dt for replay of
previous entities. Therefore, it does not work well in the few-shot scenario, where Dt with only few
samples may not contain entities of old classes for replay. Additionally, we find that the performance
of AS-DFD [7] is slightly lower than Ours (β = 0), i.e., distilling using data reconstructed with only
Lcrf . AS-DFD is designed for text classification, where they use the feature of the special token
[CLS] from BERT for classification, while features of the non-special tokens (within text) are trained
with an augmented task of language modeling. However, in NER, features of the non-special tokens
are directly used for prediction. Thus, simultaneously training such features with language modeling
may distract the model from learning the task specific information of NER. In the ablation study, we
find that our adversarial matching indeed improves the quality of the synthetic data (Ours v.s. Ours
(β = 0)), especially when excluding tokens of the reconstructed old entities from matching (Ours v.s.
Ours (all tokens)).

7 Conclusion

In this work, we study continual few-shot learning for NER, which is a more challenging but practical
scenario compared to continual learning of NER. To address the problem of catastrophic forgetting,
we proposed to reconstruct synthetic training of the old entity classes from the model trained at the
previous time step. Then, we proposed a framework that distills with both real data from the current
training dataset and the synthetic data. Distilling with the synthetic data helps preserving knowledge
of the old entity classes. Additionally, the synthetic data allows the model to be trained with a more
diverse context, thus less likely to overfit to the few training samples of current step. Experimental
results showed that our method outperforms existing baselines.
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