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Abstract

In many real-world settings, machine learning models need to identify user inputs
that are out-of-domain (OOD) so as to avoid performing wrong actions. This work
focuses on a challenging case of OOD detection, where no labels for in-domain data
are accessible (e.g., no intent labels for the intent classification task). To this end, we
propose a novel representation learning based method by combining unsupervised
clustering and contrastive learning so that better data representations for OOD
detection can be learned. Through extensive experiments, we demonstrate that this
method can be even competitive to the state-of-the-art supervised approaches with
label information.

1 Introduction

Deep learning models are widely used in many real-life applications, and for many classification
problems. At test time, models need to identify examples that differ significantly from the model’s
training data distribution, i.e., out-of-domain detection. For example, in dialog agents such as
Amazon Alexa and Google Home Assistant, detecting unknown or out-of-domain (OOD) intents
from user queries is an essential component in order to know when a query falls outside their range
of predefined, supported intents [29]. Correctly identifying out-of-scope cases is especially crucial in
deployed systems, both to avoid performing the wrong action and also to identify potential future
directions for development. However, for state-of-the-art deep learning classifiers, it has been widely
observed that their raw probability values are often over-calibrated, i.e., it has high values even for
OOD inputs [8, 9]. This necessitates having a specially designed mechanism for OOD detection.

The task of OOD detection has historically been explored in related forms under various names
such as outlier detection, anomaly detection, open classification, etc. [9, 1, 25, 11, 12]. Most of
previous work relied on the existing class labels (ID labels hereafter) for in-domain multi-class
classification tasks. For example, for OOD detection for the intent classification task, current work
implements OOD detection based on a classifier that has been well trained using the intent labels
for ID data [29, 18, 33]. In contrast, our work addresses the OOD detection problem in the scenario
where no ID labels are available (e.g., no intent labels for the multi-class intent classification task)
and thus most existing solutions are not directly applicable.

Current available methods for tackling this OOD detection without ID labels setting can be categorized
into two threads: language model (LM) likelihood based methods [20, 6], and representation learning
based one-class classification method [22, 26]. For the first thread, [3, 16] find that likelihood is
poor at separating out OOD examples; in some cases even assigning them higher likelihood than the
ID test split. [20] made similar observations for detecting OOD DNA sequences and thus proposed
to “correct” the original likelihood with one from a “background” model trained on noisy inputs,
termed as likelihood ratio (LR). [6] explored the use of LR method on NLP tasks and reported good
performance. For the second thread, we can treat all of the ID data as one-class data and those OOD
data as other classes, forming a one-class classification problem. [26] proposed to first learn a good
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representation model via contrastive learning and then learn a density estimator on the obtained
representations, which has shown state-of-the-art performance for one-class classification.

In this work, we propose a novel method for the second thread of representation learning based
methods. We find that directly applying representation learning based one-class classification methods
to our problem cannot yield satisfying performance, since ID data indeed consists of multiple classes
that we do not have access to. To solve this issue, we propose to perform both unsupervised clustering
and contrastive learning when we learn representations of ID data, which can help produce sharper
boundaries between ID and OOD samples. To the best of our knowledge, we are the first to apply
the representation learning based one-class classification method to OOD detection in NLP tasks
and significantly improve it so that it can rival likelihood based methods. Our proposed methods for
textual OOD detection without ID labels have achieved very impressive performance, even close to
those achieved by supervised methods that use ID labels for training for three out of four datasets.

2 Related Works

All OOD detection methods for unsupervised detection rely on producing a score that can be compared
with a threshold to differentiate between ID and OOD samples. One major line of methods utilize
classifiers trained on the ID data to calculate the probability of the test instance and use it as
comparison score. The maximum softmax probability is recognized as a strong baseline [9]. [13]
found that increasing the softmax temperature τ makes the resulting probability more discriminative
for OOD Detection. [11] and [34] utilized ID inputs and unlabeled data to generate pseudo-OOD
utterances around the decision boundaries with a generative adversarial network (GAN) so as to
calibrate the output probabilities. Another important line of methods use distance estimation as the
OOD score: [12] proposed using Mahalanobis distances to per-class Gaussians in the intermediate
representation learned by the classifier. Specifically, a Gaussian distribution is fit for each training
class from all training points in that class. Following this work, [10] analyzed the effectiveness
of Mahalanobis distance and proposed several variants. [30] and [18] applied it to NLP tasks and
reported strong performance.

All of the above previous work assumed the availability of well-trained classifiers on ID data with
annotated ID labels. However, in some cases, such annotated labels for classification may not be
available, posing a great challenge to OOD detection. Our work will focus on addressing this special
case of OOD detection without ID labels. It has been rarely explored previously. The only available
ready-to-use method is the likelihood ratio method, where two deep generative models are trained on
normal and noisy inputs, respectively, and then the difference of likelihood produced by these two
models is used as the OOD score [20, 6, 18]. In this study, we compare that work with other ways of
building the background model and evaluate the effect of length normalization for likelihood scores.
We find that a generic pre-trained language model without domain adaptation is a better choice for
the background model.

3 Methods

In this section, we would like to propose a representation learning based method for OOD detection
without any ID labels. More specifically, the representation learning is implemented via a classic
unsupervised method: unsupervised clustering. Combined with a recent popular technique, contrastive
learning, it can significantly boost the OOD detection performance.

Our method is mainly composed of two steps: adaptive representation learning and density estimation.

• Adaptive representation learning: In this step, we learn the ID data distribution with a
pre-trained sentence encoder ψ by optimizing the following overall objective:

L = Lcluster + γLCL, (1)
where Lcluster denotes the unsupervised clustering objective and LCL denotes the con-
trastive learning objective, both of which are described in more details below, and γ is tuned
on the validation set.

• Density estimation: In this step, we feed each ID sentence xID
i into the encoder ψ and

obtain the mean vector of all the tokens’ hidden states from the last layer, which is used as
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its representation vector: ψ(xID
i ). Then we learn a density estimator D over these vectors,

such as One-class Support Vector Machine (OC-SVM), Kernel Density Estimation (KDE),
and Gaussian Mixture Model (GMM) [21]. We choose GMM in our work since we find it
consistently outperforms other choices in experiments.
During inference, given a test sample x, we first encode it with ψ and then use the density
estimator D to produce a density score D(ψ(x)). If this score is above a pre-set threshold η,
this sample is considered as an ID sample, otherwise as an OOD sample.

3.1 Clustering

Our ID data may contain multiple classes, but we do not have such annotations. Therefore, we would
like to adopt unsupervised clustering to learn this implicit prior. Suppose our ID data consists of K
semantic categories, and each category is characterized by its centroid in the representation space,
denoted as µk, k ∈ {1, ...,K}. Here µk is iteratively refined during the training phase. Note that
since we do not know how many clusters there are for the ID data, K is treated as a hyper-parameter
and tuned using the validation set. Overall, the objective for unsupervised clustering is to push the
cluster assignment probability qi for input text xi towards the target distribution pi, which is achieved
by optimizing the KL divergence between them:

`Ci = KL(pi||qi) =
K∑

k=1

pik log
pik
qik

,

where qik and pik are the predicted and target probability of assigning xi to the kth cluster, respec-
tively. The overall clustering objective is then defined as:

Lcluster =
1

M

M∑
i=1

`Ci , (2)

where M is the batch size.

Following [27], we use the Student’s t-distribution to compute qik as below:

qik =
(1+ ‖ ei − µk ‖22 /α)−

α+1
2∑K

k′=1(1+ ‖ ei − µ′k ‖22 /α)−
α+1
2

,

where ei = ψ(xi), and α denotes the degree of freedom of the Student’s t-distribution, which is set
as 1 in this work.

Since we do not have the ground truth of pik, we approximate it following [28]:

pik =
q2ik/fk∑K

k′=1 q
2
ik′/fk′

,

where fk =
∑M

i=1 qik. This target distribution first sharpens the soft-assignment probability qik by
raising it to the second power, and then normalizes it by the associated cluster frequency. By doing
so, we encourage learning from high confidence cluster assignments and simultaneously combating
the bias caused by imbalanced clusters.

3.2 Contrastive Learning

Following [32], we add a contrastive learning training objective [2] while performing clustering,
which can help stabilize and improve the clustering process. For a randomly sampled mini-batch
B = {xi0}Mi0=1 (all come from ID samples), we randomly generate an augmentation xi1 for each
data instance xi0 so that xi0 and xi1 form a pair of positive instances, yielding an augmented mini-
batch Ba of size 2M . Following [7], to obtain the data augmentation, we pass the same input
sentence to the pre-trained sentence encoder twice and obtain two embeddings as “positive pairs”, by
applying independently sampled dropout masks (current prevalent pre-trained encoders are all based
on transformer architecture and contain dropout masks in each layer). Although strikingly simple,
this approach has been found to outperform many other complex text augmentation methods, such as
contextual word replacement and back-translation [7]. To achieve contrastive learning, for xi0 we try
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to bring it close to its positive counterpart xi1 while moving it far away from other instances in the
mini-batch Ba, which is implemented by minimizing:

`CL
i0 = − log

exp(sim(zi0 , zi1)/τ)∑2M
j=1 1j 6=i0 · exp(sim(zi0 , zj)/τ)

,

where zj = g(ψ(xj)) and g is implemented by a two-layers full connected network in this work; τ
denotes the temperature parameter which we set as 0.5; sim(zi, zj) = zTi zj/||zi||2||zj ||2 following
[2]. Then the overall contrastive learning objective is defined as:

LCL =
1

2M

2M∑
i=1

`CL
i . (3)

4 Experiments

4.1 Datasets

We have experimented with four text classification datasets: two on intent classification for dialogue
systems, one on question topic classification, and one on search snippets topic classification. Data
statistics are in the Appendix.

SNIPS consists of user utterances for 7 intent classes such as GetWeather, RateBook, etc. [4].
Since this dataset itself does not include OOD utterances, we follow the procedure described in
[14] to synthetically create OOD examples. Intent classes covering at least 75% of the training
points in combination are retained as ID. Examples from the remaining classes are treated as OOD
and removed from the training set. In the validation and test sets, examples from these classes are
relabelled to the single class label OOD. Since multiple ID-OOD splits of the classes satisfying these
ratios are possible, our results are averaged across 5 randomly chosen splits.

ROSTD starts from the English part of multilingual dialog dataset released by [24] as ID utterances
and later gets extended by [6] with OOD utterances.

Stackoverflow is a subset of the challenge data published by Kaggle, where question titles associ-
ated with 20 different categories are selected by [31]. We follow the same way as SNIPS to create
OOD samples. We report average results across 5 randomly chosen splits.

Searchsnippets is extracted from web search snippets, which contains search snippets associated
with 8 different topics [17]. We randomly selected 2 out of 8 classes as OOD classes while using the
remaining classes as ID classes. Again we report average results across 5 randomly chosen splits.

4.2 Evaluation Metrics

Following [9], we use the following metrics to measure OOD detection performance:

FPR@95%TPR corresponds to False Positive Ratio with the decision threshold being set to
θ = sup{θ̃ ∈ R|TPR(θ̃) ≤ 95%}, where TPR is the True Positive Ratio. Note here the OOD class
is the positive class.

AUROC measures the area under the Receiver Operating Characteristic, also known as the ROC
curve. Note that this curve is for the OOD class.

AUPROOD measures the area under Precision-Recall Curve, taking OOD as the positive class. It
is more suitable for highly imbalanced data in comparison to AUROC.

4.3 Experimental Settings

The sentence encoder ψ we used is DistilBERT-Base-NLI (denoted also as DistilBERT in the rest of
this document), which is obtained by fine-tuning DistilBERT-Base on MultiNLI and SNLI datasets
[19]. By tuning on the validation set, we set the number of components for GMM as 1 and set γ as
1.0, 0.1, 1.0, and 4.0 for ROSTD, SNIPS, Stackoverflow, and Searchsnippets, respectively.

We compare our representation learning based method with the following baselines:
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Table 1: Comparison of OOD detection performance for the representation learning based methods.
The bold font highlights the best results achieved among methods without using ID labels. † denotes
that the best result is achieved by the RoBERTa-Large-NLI-SimCSE encoder while ‡ represents it is
from DistilBERT-Base-NLI. “CL” denotes “contrastive learning”.

Dataset ID Labels Model AUROC(%) ↑ AUPROOD(%) ↑ FPR@95%TPR(%) ↓

ROSTD
NO

Encoder w/o Fine-tuning† 99.77 99.46 0.71
Fine-tuned Encoder via MLM† 99.29 98.11 3.00
Ours 99.73 99.30 0.73
−Lcluster 97.78 93.91 9.58
−LCL 98.88 96.45 4.87

YES DistilBERT Maha 99.61 98.85 1.60
RoBERTa Maha 99.80 99.50 0.50

SNIPS

NO

Encoder w/o Fine-tuning† 94.09± 3.07 82.31± 10.04 17.78± 7.08
Fine-tuned Encoder via MLM‡ 94.76± 3.31 86.53± 8.07 21.54± 15.03
Ours 97.56± 1.01 92.80± 3.19 8.53± 4.42
−Lcluster 84.54± 8.95 64.02± 18.70 43.57± 19.08
−LCL 97.17± 1.37 92.22± 3.97 15.75± 8.93

YES DistilBERT Maha 97.93± 1.37 95.29± 3.03 8.65± 6.42
RoBERTa Maha 98.30± 0.98 95.10± 3.80 7.06± 3.51

Stackoverflow

NO

Encoder w/o Fine-tuning‡ 73.07± 3.77 55.69± 3.40 76.54± 1.62
Fine-tuned Encoder via MLM‡ 78.59± 1.68 62.18± 1.63 64.13± 5.04
Ours 83.65± 0.13 62.22± 2.85 36.82± 1.84
−Lcluster 70.99± 1.99 53.76± 3.00 78.43± 3.32
−LCL 50.79± 13.13 37.99± 13.54 90.80± 5.24

YES DistilBERT Maha 92.00± 0.96 78.35± 3.24 19.99± 3.02
RoBERTa Maha 91.98± 1.34 76.55± 5.62 19.61± 2.51

Searchsnippets

NO

Encoder w/o Fine-tuning† 82.93± 5.05 88.22± 3.78 61.80± 11.02
Fine-tuned Encoder via MLM† 84.32± 1.96 89.27± 2.15 62.54± 4.24
Ours 94.70± 2.29 96.16± 1.92 22.43± 7.20
−Lcluster 88.09± 6.63 90.91± 5.73 41.09± 17.76
−LCL 78.95± 4.93 82.01± 4.22 65.06± 11.53

YES DistilBERT Maha 95.09± 2.43 96.88± 1.56 25.13± 14.00
RoBERTa Maha 97.26± 1.05 98.38± 0.64 14.61± 7.00

Encoder w/o Fine-tuning We directly use a pre-trained encoder ψ as an off-the-shelf model
without any fine-tuning. Specifically, we used DistilBERT as well as the RoBERTa-Large-NLI-
SimCSE (denoted also as RoBERTa later) that is obtained by fine-tuning RoBERTa-Large on NLI
datasets via contrastive learning and is the state-of-the-art encoder for sentence embedding [7].1 We
report the best result between these two encoders.

Fine-tuned Encoder via MLM We fine-tune DistilBERT and RoBERTa on ID data via masked
language modeling (MLM) [5] to obtain domain data adapted ψ and report the best result.

DistilBERT/RoBERTa Maha We re-implemented a supervised method from [18] by training a
DistilBERT and a RoBERTa model on ID data with those ID labels and then performing OOD
detection via Mahalanobis distance, which is the state-of-the-art method for textual OOD detection.

−Lcluster &−LCL Either unsupervised clustering by optimizing Equation 2 or contrastive learning
by optimizing Equation 3 can act as strong baselines since they can both individually serve as
approaches for unsupervised representation learning. We also compare with these two baselines in
the ablation study.

5 Results
Table 1 summarizes the main results of OOD detection for the representation learning based methods.
From this table, we have the following observations:

• Simply applying a generic pre-trained encoder without any fine-tuning on the ID data to
obtain data representations and then performing density estimation can already achieve good
performance (refer to Encoder w/o Fine-tuning).

• Adapting the pre-trained encoder on the ID data via MLM, i.e., fine-tuned encoder via MLM,
shows some improvement for most datasets and metrics, e.g., on SNIPS, Stackoverflow, and
Searchsnippets datasets for the AUROC and AUPROOD metrics.

1https://github.com/princeton-nlp/SimCSE
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• Our proposed method for adapting the encoder via clustering and contrastive learning can sig-
nificantly boost the OOD detection performance consistently for all datasets, outperforming
all baselines.

• Our method can be comparable to the state-of-the-art method that intensively utilizes the ID
labels for supervised training (i.e., DistilBERT/RoBERTa Maha) for ROSTD, SNIPS, and
Searchsnippets datasets.

It is worth pointing out that our method is based on a small-size encoder, i.e., DistilBERT-Base
(around 66M parameters), however, those baselines including Encoder w/o Fine-tuning, Finetuned
Encoder, and RoBERTa Maha have adopted an encoder of much larger size, i.e., RoBERTa-Large with
around 355M parameters. Moreover, the RoBERTa-Large encoder has been pre-trained on around 10
times larger corpora compared with DistilBERT-Base, thus achieving much better performance on
various kinds of language understanding tasks, e.g., the average score of 88.5 achieved by RoBERTa-
Large vs 77.0 achieved by DistilBERT-Base on the development sets of GLUE benchmark [23, 15].
Although our method is equipped with an encoder with much smaller model size (about 1/5) and
inferior down-stream tasks performance, it can still beat those baselines using larger models when
no ID labels are used, and be on par with the baseline that does use ID labels. This comparison
demonstrates that our method can achieve both high OOD detection performance and parameter &
computation efficiency, which fulfills the two consideratas for real-world deployment in industry
applications.

6 Discussions
6.1 Ablation Study

We did an ablation study by removing either Lcluster or LCL when optimizing Equation 1 for the
representation learning based methods. These results are included in Table 1. By comparing with
the full solution, we see that: (1) Both training objectives contribute to the improvement. (2) In
some cases (e.g., Stackoverflow and Searchsnippets datasets), removing LCL would cause larger
performance degradation, while in the other cases, Lcluster is more important. This is dependent on
the distributions of the ID samples (separation of different classes) and how OOD data is separated
from ID data. We have provided a detailed analysis over representations we have learned via
visualization to help compare different settings in the Appendix.

6.2 Influence of K

Table 2: Comparison between the optimal number
of clusters and the number of ID labels. Since
three datasets have 5 random splits, we list both
minimum and maximum number of labels within
the parentheses.

ROSTD SNIPS Stackoverflow Searchsnippets

Optimal K 14 6 17 30
Num of labels 12 (5, 5) (13, 14) (6, 6)

Since we do not have any information on the
ID labels, we need to tune the number of clus-
ters K on the validation set and find the optimal
one when we perform unsupervised clustering.
Table 2 shows these values for different data
sets along with their numbers of classes for the
ID data for the representation learning based
methods. We can see that the optimal number
of clusters for OOD detection is not equal to
the actual number of labels within ID data. For
example, the optimalK is 30 for the Searchsnip-
pets dataset, which is far away from the number of labels, i.e., 6. This implies that our method is not
simply an unsupervised approach to learning the classification task but rather a method more suitable
for learning ID data distribution.

7 Conclusion

In this work, we aim at the OOD detection problem without using any ID labels. In addition to
evaluating different LM based likelihood methods, we propose a representation learning based method
by performing unsupervised clustering and contrastive learning to learn good data representations for
OOD detection. We demonstrate that this novel unsupervised method can not only outperform the
best likelihood based methods but also be even competitive to the state-of-the-art supervised method
that has extensively used labeled data.
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A Data

Table A.1 summarizes the statistics of these four datasets. To be noted, the labels in these datasets are
only used for splitting ID and OOD samples and not used for training the OOD detector.

Table A.1: Dataset statistics. Except ROSTD, all numbers are averaged across 5 chosen splits.

Statistic ROSTD SNIPS Stackoverflow Searchsnippets

Train-ID 30,521 9,332 10,020 9,163
Valid-ID 4,181 500 428 1,238
Valid-OOD 1,500 200 229 1,292
Test-ID 8,621 506 418 1,237
Test-OOD 3,090 193 235 1,293

B Visualization of Representations

To obtain a qualitative sense of how our proposed representation learning method works, we provide
T-SNE visualization plots of sentence representations for both ID and OOD samples of the Search-
snippets, SNIPS, Stackoverflow, and ROSTD datasets in Figure B.1, B.2, B.3, and B.4, respectively.
As can be seen, the unsupervised clustering module can aggregate data points into many clusters by
bringing close sentences of the same classes while pushing away sentences of different classes (e.g.,
Figure B.1B, B.2B, B.3B, and B.4B). In contrast, the contrastive learning module can distribute data
points uniformly over the whole latent space, in which process ID and OOD samples can be pushed
away from each other (e.g., Figure B.1C). By combining these two modules, we can realize both
goals and make the boundaries between ID and OOD samples much more clear compared with no
adaptive fine-tuning (e.g., Figure B.1A vs. Figure B.1D), and thus achieve the optimal OOD detection
performance. Note when both modules are combined, the OOD samples tend to be condensed into
the center, while ID samples are scattered outside of OOD samples in clusters (e.g., Figure B.1D,
B.2D, B.3D, and B.4D), which facilitates the density estimator to better differentiate ID and OOD
samples.

More specifically, for the Searchsnippets dataset, without the help of contrastive learning, represen-
tations obtained via only clustering still cannot well differentiate OOD samples from ID samples
because ID and OOD samples still mingle with each other for some clusters (see Figure B.1B). In
contrast, from Figure B.1C, we find that contrastive learning alone can better separate ID and OOD
samples than no adaptation by condensing the ID data distribution (red dots) and spreading OOD
samples outside (blue dots). In this case, the contrastive learning module contributes more to the full
model performance than the clustering module due to its better capability at differentiating ID and
OOD samples, which aligns with the conclusion drawn from the ablation study in Table 1. However,
for the ROSTD and SNIPS datasets, unsupervised clustering itself can already well separate ID and
OOD samples by distributing the ID samples into many condensed clusters, where OOD samples
are distributed outside of the ID clusters. This explains the finding revealed by the Ablation study in
Section 6.1 that the clustering objective contributes more to the full model performance.
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Figure B.1: T-SNE visualization of learned sentence representations for both ID and OOD sam-
ples of Searchsnippets dataset. A: DistilBERT-Base-NLI; B: DistilBERT-Base-NLI fine-tuned via
unsupervised clustering; C: DistilBERT-Base-NLI fine-tuned via contrastive learning; D: DistilBERT-
Base-NLI fine-tuned via combining clustering and contrastive learning.
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Figure B.2: T-SNE visualization of learned sentence representations for both ID and OOD samples
of SNIPS dataset. A: DistilBERT-Base-NLI; B: DistilBERT-Base-NLI fine-tuned via unsupervised
clustering; C: DistilBERT-Base-NLI fine-tuned via contrastive learning; D: DistilBERT-Base-NLI
fine-tuned via combining clustering and contrastive learning.
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Figure B.3: T-SNE visualization of learned sentence representations for both ID and OOD sam-
ples of Stackoverflow dataset. A: DistilBERT-Base-NLI; B: DistilBERT-Base-NLI fine-tuned via
unsupervised clustering; C: DistilBERT-Base-NLI fine-tuned via contrastive learning; D: DistilBERT-
Base-NLI fine-tuned via combining clustering and contrastive learning.
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Figure B.4: T-SNE visualization of learned sentence representations for both ID and OOD samples
of ROSTD dataset. A: DistilBERT-Base-NLI; B: DistilBERT-Base-NLI fine-tuned via unsupervised
clustering; C: DistilBERT-Base-NLI fine-tuned via contrastive learning; D: DistilBERT-Base-NLI
fine-tuned via combining clustering and contrastive learning.
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