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Abstract

GPT is an auto-regressive Transformer-based pre-trained language model which
has attracted a lot of attention in the natural language processing (NLP) domain due
to its state-of-the-art performance in several downstream tasks. The success of GPT
is mostly attributed to its pre-training on huge amount of data and its large number
of parameters (from ~100M to billions of parameters). Despite the superior perfor-
mance of GPT (especially in few-shot or zero-shot setup), this overparameterized
nature of GPT can be very prohibitive for deploying this model on devices with
limited computational power or memory. This problem can be mitigated using
model compression techniques; however, compressing GPT models has not been
investigated much in the literature. In this work, we use Kronecker decomposition
to compress the linear mappings of the GPT-2 model. Our Kronecker GPT-2 model
(KnGPT?2) is initialized based on the Kronecker decomposed version of the GPT-2
model and then is undergone a very light pre-training on only a small portion of
the training data with intermediate layer knowledge distillation (ILKD). Finally,
our KnGPT?2 is fine-tuned on down-stream tasks using ILKD as well. We evaluate
our model on both language modeling and General Language Understanding Eval-
uation benchmark tasks and show that with more efficient pre-training and similar
number of parameters, our KnGPT?2 outperforms the existing DistilGPT2 model
significantly.

1 Introduction

Recently, development and deployment of pre-trained language models (PLMs) has improved the
performance of NLP models significantly [2,[18] 29,21, |18]. PLMs are mostly Transformer-based
models, which are pre-trained on enormous unlabeled data. Although Transformer-based PLMs are
powerful in performance, their huge size is a barrier for efficient training or inference of these models
on lower capacity devices with 3 memory, computation and energy constraints. Therefore, there has
been a growing volume of literature focused on developing frameworks for compressing these large
PLMs. 3

Like other deep learning models, the main directions of model compression for PLMs are using
following methods in isolation or combination: low-bit quantization [} [17]], pruning [6], knowledge
distillation (KD) [8] and matrix decomposition ([30, [12]).

PLMs can be divided into encoder-based and auto-regressive models such as the BERT [2, [14] and
GPT [1] family respectively. Although the size of BERT family models is usually smaller than the
GPT family, compressing the BERT family has been investigated much more in the literature (e.g.
DistilBERT [20], TinyBERT [[10], MobileBERT [22]], ALP-KD [16], MATE-KD [19]], Annealing-
KD [9]] and BERTQuant [31]]). On the other hand, to the best of our knowledge, the GPT family has
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barely a handful of compressed models, among them the DistilGPTQF_] model is very prominent. The
DistilGPT2 model is heavily pre-trained for 3 epochs on the large OpenWebText dataseﬂ Moreover,
it is evident in the literature that the GPT model cannot compete with BERT on natural language
understanding (NLU) tasks [[13]]. Therefore, developing an efficient compressed GPT model with
comparable NLU performance is still an open problem.

In this paper, we use Kronecker decomposition, which has been recently used for BERT compression
[23]], for compression of the GPT-2 model (we refer to our model as KnGPT?2 in this paper). We
use Kronecker decomposition to represent the weight matrices of linear layers in GPT-2 by smaller
matrices which can reduce the size and computation overhead. We use Kronecker decomposition to
compress the embedding and Transformer layers of GPT-2. For Transformer layers, the linear layers
of multi-head attention (MHA) and the feed-forward network (FFN) blocks of Transformer layers are
decomposed into Kronecker layers.

Kronecker decomposition leads to reduction in expressiveness of the model. We use a very light
pre-training with intermediate layer knowledge distillation (ILKD) to address this issue, which
improves the performance of the compressed model significantly. It is worth mentioning that for
our pre-training, we use 1/10™ of the DistilGPT2’s pre-training data (i.e. OpenWebText) only for 1
epoch (instead of 3 epochs in DistilGPT2). Furthermore, in this paper, our framework is applied to
GPT-2 but it can be easily exploited to compress other models as well. To summarize contributions
of this paper, we mention the following points:

* To the best of our knowledge, we are the first work which uses Kronecker decomposition
for compression of the GPT model.

* Our KnGPT2 model improves training efficiency and performance of the DistilGPT2 model
significantly.

* We evaluate the performance of our KnGPT2 on both language modeling and the GLUE
benchmark tasks.

2 Related Works

In this section, first, we review some of previous works that have deployed Kronecker decomposition
for compression of deep learning models. Then, some works related to GPT compression are covered.
[32] is the first work that used summation of multiple Kronecker products to compress the weight
matrices in fully-connected networks and small convolutional neural networks. [24] proposed a
hybrid method which separates the weight matrices into an upper and a lower part, upper part
remains untouched but the lower part decomposes to Kronecker products. They used this approach
for small language models to be utilized on internet of things (IoT) applications. Recently, [25]
extended the mentioned hybrid method to non-IoT applications by adding a sparse matrix to the
Kronecker products. [23]] has deployed a similar approach to ours to compress BERT which achieved
promising results but to the best of our known, this work is the first attempt for GPT compression
using Kronecker decomposition.

DistilGPTZis one of the most successful and well-known compressed versions of GPT-2 which is
considered as a baseline in this paper. DistilGPT2 has 82M parameters compared to 124M parameters
for GPT-2g, and is trained using KD on OpenWebTextCorpus which is a reproduction of OpenAl’s
WebText dataset.

3 Methodology

In this section, we first provide some background on Kronecker product and its mathematical
properties. We then explain how Kronecker factorization can be used for the compression of linear
layers and subsequently for the GPT model.

"https://transformer.huggingface.co/model/distil-gpt2
*https://huggingface.co/datasets/openwebtext
3For further details, see https:/huggingface.co/distilgpt2



3.1 Kronecker Product

The Kronecker product is a matrix operation (denoted by ®) which takes two matrices as input
and generates a block matrix as output. Assume that A is a matrix € IR"**™* and B is a matrix
€ R™*™ A ® B is equal to a block matrix € IR™*", where m = mims, n = nino and each
block (i, 7) is obtained by multiplying element a;; by matrix B.
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Kronecker product has attractive abstract algebraic properties such as
AB+C)=A®B+A®C, (AoB) '=A"'9B"', (A9B)'=AT®B',

for more details see [7]. The interesting properties of the Kronecker product makes it an attractive
tool for decomposition of large matrices. The Kronecker product is also a flexible method to simplify
the notation of large block matrices, both in linear mixed effect models and multilevel models [4]. It
is also a well-known technique to represent large repetitive structured graphs using the Kronecker
product [[11]. One of the most important characteristics of a matrix is its determinant and it is
well-known that for two square matrices A and B of size n, and m, |A ® B| = |A|"|B|™. This
property explains the superiority of Kronecker compared to the other decomposition methods for
large matrices. By choosing the right n and m, a large matrix W = A ® B can be decomposed to
much smaller matrices such that the above determinant equation holds.

3.2 GPT-2 Compression using Kronecker Factorization

We can represent a weight matrix, W € IR™*", by two smaller matrices, A € IR™*™ and
B € R"2*"2 guch that W = A ® B and m = myma, n = n1ns. This leads to reduction in the
number of parameters from mn for the original matrix to myn; + mgng for the Kronecker factorized
version. For example, assume that size of W is 1024 x 1024, we can represent it by two matrices of
sizes 512 x 512 and 2 x 2 for which the compression factor will be roughly equal to 4.

In the following we explain how this work uses Kronecker factorization for compression of the GPT-2
model. In large language models, embedding layer usually takes a large portion of the memory. Let
WZE e R be the lookup table for the input embedding where v is the vocabulary size and d is
the embedding dimension. To compress the embedding layer using Kronecker decomposition we

use the same method as in [23]. We define A ¢ R"*%/ and BE € R/, where f is a factor of
d. There are two reasons for this decision: first, similar to W, in the A€ matrix every row will
indicate embedding of a single word. Second, the embedding of each word, E;, can be obtained by
A¥ ® B therefore the computation complexity of this operation is O(d) which is very efficient.

The transformer architecture is composed of N identical layers each having MHA followed by FFN.
In the MHA module, there are linear layers which calculate the Query, Key and Value by multiplying
the input vector by W@, WX WV respectively. Also, in the FFN module, there are two fully
connected layers that can be represented as W candW “rrei. In this work, all of the mentioned
weight matrices at different heads and layers of the transformer are decomposed into Kronecker
factors.

For initialization, similar to [23l], the Kronecker factors A and B are estimated from the corresponding
weight matrix W in the original uncompressed pre-trained model using the solution to the nearest
Kronecker problem
(A,B) = argmin |[W — A @ BJ|3.
(A,B)
The solution to this optimization can be found by rank-1 singular value decomposition (SVD)
approximation of the reshaped W, see [26] for details.

3.3 Knowledge Distillation

In this section, the knowledge distillation method used for training the KnGPT2 model is explained.
The same method is used in the pre-training and fine-tuning stages.



Model Embedding Q.K\V FFN*

GPT-2gman 50527 x 768 768 x 768 3072 x 768
DistilGPT2 50527 x 768 768 x 768 3072 x 768
KnGPT2 A:50527x384,B:1x2 A:384 x768,B2x1 A:1536x 768, B:2x1

Table 1: This table shows configuration of the models. Note that FEN block has two projections that
shape of one is the transpose of the other one and here, only shape of one of them is mentioned. Also,
for KnGPT2, mentioned shapes for transformer layer belong to half of the layers that are decomposed
-layers with odd numbers- and shape of the other half are the same with the GPT-2 model.

Phase Batch size Learningrate o1 @2 Qg gy
Pre-training 1 0.00025 05 05 05 0.1
Fine-tuning 16 2e-5 05 05 05 0.02

Table 2: hyper-parameters that are used for pre-training and fine-tuning.

Let 7" and S represent the teacher model, GPT-2, and the student model, KnGPT2, respectively. For
a batch of data (x,y), E° and E7 are outputs of the embedding layers of the student and teacher
models respectively. Also, Attls and Attf are the attention distributions obtained by applying softmax
on the scaled dot product between query and key. H, lS and H, IT are the hidden state outputs of the
layer [. Note that by using the Kronecker factorization, like other decomposition methods, the number
of layers and dimensions of the output matrices in the student model remain intact so we can directly
obtain the difference of output of a specific layer in student an teacher model without the need for
projection. For the embedding layer we use the mean squared error (MSE) between the teacher’s and
student’s embeddings:

Lembeading (1) = MSE{E® (z), E” ()} 2)
For the MHA modules, similar to [28], we use Kullback—Leibler divergence (KL) between the
attention distributions of the student and the teacher.

Lavenion(z) = Y KL{At] (z), Att] (z)} 3)
l

For the FFN modules, we simply use the MSE between the output of the second fully connected layer
in the student and teacher:

Lttiaden suaes(¥) = Y _ MSE{H} (2), H] ()} )
l

The final loss is calculated a linear combination of the above losses as well as the cross entropy loss.

LOSS(Q?, y) = Z aq LEmbedding (33) + a2 L agtention (37) —+ a3 Lyidden States (SC) + g Lcross Entropy (377 y) (5)
(z,y)

After decomposing the teacher model, GPT-2, into KnGPT2, the performance of the model drops
significantly. This drop is mainly because of the approximation of linear weight matrices using
the corresponding Kronecker factors. Therefore, pre-training of the compressed model on a small
corpus for a few epochs is necessary to retrieve the information which are lost during decomposition.
Inspired by [[10], we pre-trained the model on a small portion, 10%, of the OpenWebText dataset
[3]] for one epoch and we used the KD method which is discussed in Section [3.3]to improve the
performance of the compressed model.

4 Experiments

We evaluated our proposed algorithm, KnGPT2, on language modeling and text classification. For
language modeling we use the Wikitext-103 [[15] dataset.For classification we use seven of the
classification tasks of the General Language Understanding Evaluation (GLUE) benchmark [27]].
These datasets can be broadly divided into 3 families of problems. Single set tasks which include
linguistic acceptability (CoLA) and sentiment analysis (SST-2), similarity and paraphrasing tasks
(MRPC and QQP), and inference tasks which include Natural Language Inference (MNLI and RTE)
and Question Answering (QNLI).



GPT-2ga1  DistilGPT2  KnGPT2

Parameters™ 124 82 83
Training time (hrs) - >9(f] 6.5
Dataset size (GB) 40 38 3.2

Table 3: Training details for GPT-2 compression. Note that number of parameters of the models are
reported excluding the output embedding layer in language modelling which is not compressed, is
equal to row Parameters™

GPT-2gman  DistilGPT2  KnGPT2

Perplexity 18.8 23.7 20.5
Table 4: Test Perplexity on WikiText-103.

4.1 Experimental Setup

The KnGPT2 model is compressed from the GPT-2gp,,; [18] model. GPT-2gp,; is 124 million
parameters. Our baseline is DistilGPT2 which has about 82 million parameters so our KnGPT2
model is compressed to the same size (83 million parameters) for a fair comparison. To achieve this,
we compress half the layers of transformer block (odd numbered ones) in addition to the embedding
layer by a factor of 2. Table[I]shows the configuration of the models. Table [2]shows hyper-parameters
that are used for pre-training and fine-tuning.

4.2 Pre-training

After the base model is compressed using Kronecker decomposition, performance of the compressed
model drops significantly since the weight matrices with the Kronecker factors are approximate.
Pre-training on a relatively small data set for one epoch helps in retrieving the accuracy. Therefore,
KnGPT2 is pre-trained on 10% of OpenWebText which is 10 times less the DistiGPT2 model. As
shown on Table [3]the training time for KnGPT2 is much faster as well.

4.3 Results

We measure the performance of our compressed model on two tasks. First we evaluate on language
modeling using the Wikitext-103 dataset. The initialized models a are first trained on this dataset and
then evaluated on the provided test set. The results are shown on Table[d] Although the DistilGPT2 is
pre-trained longer and on a larger dataset the KnGPT2 achieves a lower perplexity.

Next the performance of the models is evaluated on both the development (Table [5)) and test (Table|[6)
sets of seven datasets of the GLUE benchmark. In addition to employing the cross-entropy loss for
fitting the labels we also experiment with KD. For DistilGPT, we apply the basic KD algorithm also
referred to in the literature as Vanilla KD [9]]. For KnGPT2 we apply intermediate layer distillation as
well as Vanilla KD. For DistilGPT since the number of layers between the teacher and the student
are different, it is not clear which teacher layer should be distilled to which student layer. Although
there has been work on intermediate distillation for mismatched layers for BERT [16], extensive
experimentation is required to conclude the best practice for GPT.

On the dev set results (Table E]), we observe that KnGPT?2 performs better than DistilGPT2 for most
datasets and on average. If we apply KD we observe that it is better on all datasets compared to
DistilGPT2. Another interesting result is that Vanilla KD does not improve DistilGPT?2 fine-tuning.
The test set results on Table [6] follow the same trend as the dev results. Interestingly KnGPT2 with
KD reaches close to the GPT-2g,,;1 performance on average.

“This number is presented in [20] for training DistilBERT by the same authors. That uses the same KD
algorithm and dataset for pre-training but is applied to BERT rather than GPT. Using a similar hardware we
expect this number to be larger for DistilGPT



Model \CoLA RTE MRPC SST-2 MNLI QNLI QQP Average

GPT-25man | 476 6931 8747 9208 83.12 8887 90.25 79.81
DistilGPT2 38.7 65.0 87.7 91.3 79.9 85.7 89.3 76.8
DistilGPT2 + KD | 38.64 6498 87.31 89.80 8042 8636 89.61 76.73
KnGPT2 3751 704 88,55 88.64 78.93 86.10 88.87 77

KnGPT2 +ILKD | 4536 69.67 8741 91.28 82.15 88.58 90.34 79.25

Table 5: This table shows performance of the models on dev set of GLUE tasks. Note that GPT-2gnan
is used as teacher for KD.

Model \ CoLA RTE MRPC SST-2 MNLI QNLI QQP Average
GPT-25man | 440 632 84.5 928 81.75 88.7 88.0 77.56
DistilGPT2 324 619 84.3 90.8 7955 854 873 74.52
DistilGPT2 + KD 33 61.5 84.4 90.7 79.85 857 87.6 74.67
KnGPT2 36.7 644 84.5 89.0 7845 856 865 75.02

KnGPT2 +ILKD | 418 63.7 86.5 91.5 81.6 884 885 77.42

Table 6: This table shows performance of the models on test set of GLUE tasks. Note that GPT-2gan
is used as teacher for KD.

4.4 Ablation Study

We performed an experiment to study the effect of KD on the pre-training of KnGPT2. In this
experiment we used Wikitext-103 as our pre-training dataset. We compare four models and evaluate
on LM as well as on classification using the MNLI dataset from GLUE. As shown on Table[7] we
compare KnGPT2 without pre-training, with language modeling pre-training only, with KD pre-
training only and both language modeling and KD pre-training. Note that we apply ILKD, discussed
before for fine-tuning, as our KD algorithm. We observe that pre-training is important for good
performance on the downstream task but lower perplexity on LM is not always a good indicator of
better downstream performance.

Model Wikitext-103(pp.) MNLI (f1)
KnGPT2 28608 69.33
KnGPT2 + LM 21.94 77.87
KnGPT2 + KD 144.1 77.50
KnGPT2 + LM + KD 23.04 77.97

Table 7: Ablation on the effect of pre-training with KD on language model and MNLI classification

5 Conclusion

In this paper, we compressed GPT-2 by compressing linear layers of a GPT model using Kronecker
decomposition. Our model is pre-trained on a relatively small (10 times smaller than the dataset used
for baseline) dataset which makes the pre-training much faster. Our proposed model significantly
outperformed the baseline on the GLUE benchmark. Using KD can help to further reduce the
performance drop of the compressed model. Using Kronecker decomposition on larger GPT models
and for higher compression factors are two interesting future directions.
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