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Abstract

Named Entity Recognition (NER) is an important task, to enable a wide range of
NLP applications. The state-of-the-art NER models are based on deep learning
and require enough labeled data. In practice, the labeled data for NER is usually
limited, as providing accurate labels to the sentences is very time consuming. With
an NER model trained on limited labeled data, it is desirable to develop an efficient
mechanism to collect data labels and improve the model over time. To achieve this,
existing works develop active learning approaches. However, these approaches are
usually developed for annotators and assume the annotators will provide the exactly
correct labels to each sentence selected to label. In this paper, we propose a simple
yet effective user-in-the-loop feedback mechanism to enable end users, instead
of annotators, to easily provide labels to the system. We identify counterfactual
bias of the data collected by this feedback mechanism. To alleviate the bias and
achieve more sample-efficient learning, we further develop a counterfactual NER
learning framework. We develop an imputation model to estimate the loss in those
non-displayed entity classes. By considering both losses on displayed and non-
displayed entity classes, we can efficiently alleviate such display bias in the NER
model. With extensive experiments, we validate the effectiveness of our feedback
mechanism and learning framework.

1 Introduction

In the task of Named Entity Recognition (NER), we extract and classify named entities in text data
into pre-defined categories. The state-of-the-art NER models are developed based on deep neural
networks, where an adequate amount of labeled data is needed to train a generalize model. However,
the labeled NER data is usually limited in practice, since it requires a lot of human effort to provide
accurate labels to the sentences. With limited labeled data to train an NER model, it is desirable to
develop an efficient mechanism to continually collect data labels and update the model over time.

To collect data and update the NER model, existing works develop active learning approaches
[14, 6, 13]. These approaches are usually developed for annotators (e.g., from Amazon Mechanical
Turk), who are usually hired to provide correct labels to the sentences or subsequences. By selecting
appropriate sentences or subsequences and require the labels from the annotators, we can effectively
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Figure 1: Use cases of our NER system. In a modern NER system, there may be hundreds of entity
classes. In use case 1, the user gets a list of predicted top candidate entities and provides the feedback
that ‘author’ is correct. In use case 2, the user cannot find the correct entity within the list, and choose
‘none of the above’. Directly training on the data collected in use case 2 may be problematic, due to a
selection bias between distributions of displayed and non-displayed entities [20].

improve the accuracy of the NER system. However, requiring labels from annotators may still be
limited. In practice, the steaming data of new classes keeps arriving. To train an NER model to
classify the data of new classes, we need to continually hire annotators to provide labeled data of new
classes, which can be very expensive. Besides, the customers who are actually using the NER system
(i.e., end users) may have various background. For example, some end users may care about the
named entities from medical domains while some other end users may care about the named entities
from travel domains. Therefore, it is desirable to collect the feedback directly from the end users,
instead of annotators, to improve the NER model.

In this paper, we propose a simple yet effective user-in-the-loop feedback mechanism to enable
end users, instead of annotators, to easily provide labels to the NER system. Each time when the
user receives the prediction results from the system, it is designed that the user will receive a list of
candidate prediction results. Then, the user can select the correct one from the list of candidates,
or provide the feedback that none of the candidates is correct. The use case 1 in Figure 1 shows an
example. The user get a list of predicted candidate entities and provides the feedback that ‘author’ is
correct. Based on the user feedback, the NER model updates and improves over time.
Although the above user-in-the-loop feedback mechanism is straightforward, we identify an important
challenge when developing algorithms to efficiently learn from the user feedback collected by the
above mechanism. The initial NER model may be trained on limited labeled sentences. When the
labeled sentences are limited, there are data selection bias which will also lead to the bias of the initial
NER model. With this inaccurate initial model, the correct entities are not able to be displayed as the
top candidates and receive positive feedback from the user, especially when there are many entities but
only limited space is available to display the candidates. Without handling the non-displayed correct
entities, the NER model updated over time may also have a strong bias and inaccurate predictions,
due to the inconsistency between distributions of labeled and unlabeled samples [20]. As a result, the
NER model learning over time is suboptimal and we cannot achieve sample-efficient learning.

To address the above challenge, we further develop ULNER-DR: a user-in-the-loop NER learning
framework based on the doubly robust method. First, we introduce an uniform policy to online
collect unbiased data and train an imputation model. Second, to alleviate the bias, we develop the
counterfactual loss based on the imputation model to guide the model training process. With the
imputation model and counterfactual loss, we can effectively alliviate the bias and achieve more
sample-efficient learning. Our main contributions are summarized as follows.

• We propose a simple yet effective feedback mechanism to enable end users to easily
provide labels to the system. We identify counterfactual bias when developing algorithms to
efficiently learn from the user feedback collected by the proposed mechanism.

• We develop a counterfactual NER learning framework to alleviate the bias and achieve more
sample-efficient learning.

• With extensive experiments on real-world datasets, we validate the effectiveness of our
feedback mechanism and counterfactual NER learning framework.

2 Related Work

Named Entity Recognition on Streaming Data Several works are developed to enable the NER
model to incorporate new labeled data and learn. One direction is to develop active learning
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mechanism, where the system interactively selects samples to require labels from humans [14, 6, 13].
In [14], various selection strategies are implemented, in which the best strategy matches state-of-the-
art performance using only 25% of original data. To achieve more sample-efficient learning, [13]
enables the active learning algorithm to query subsequences within sentences, and further propagate
their labels to other sentences. Our design is different from active learning for NER [14, 6, 13].
These approaches [14, 6, 13] are usually developed for annotators, and assume that the annotators
will provide the exactly correct labels to each sentence or subsequence selected to be annotated. In
this paper, we focus on a different setting where the system interactively selects samples to require
labels from end users of the NER system. Different from annotators, the end users pays to get the
labeling services, and it is unrealistic to assume the end users to label the exactly correct entity class
especially when there are many entity classes (e.g., there are 66 entity classes in [4]). Instead, the end
user may only provide feedback to some top candidate predictions, as illustrated in Figure 1.

Counterfactual Learning Previous works [9, 16, 20] realized the importance of handling non-
displayed events. They regarded non-displayed events as unlabeled instances, and model the CTR
prediction as a learning problem with labeled and unlabeled instances, which aims to learning under
covariate shift (sample bias corrections). Several counterfactual estimators have been developed.
Importance sampling (IS) is a simple way to tackle this issue, but suffers from high variances. Classic
variance reduction techniques [2] and additive control variates [11] for IS are useful for counterfactual
evaluation and learning. The self-normalized estimator [17] is superior to the vanilla IS estimator
and obtains improved performance. Inverse propensity score (IPS) [8] weights each labeled event
with the inverse of its propensity score, which is determined by the tendency or the likelihood of
the logged data. Doubly robust for counterfactual learning [5] takes advantage of the IPS [8] and
direct method [20]: if either one of the two estimators is correct, then the estimation is unbiased,
increasing the chances of accurate ratio estimations. Our approach based on doubly robust is a simple
and effective way for the user-in-the-loop NER learning problem, showing great improvements.

3 NER Model Architecture

In our user-in-the-loop NER learning setting, the model needs to be frequently retrained while
collecting human feedback. To develop a practical solution, we accelerate the computation by
following the model architecture in [14]. The NER model mainly consists of three components.
First, characters in each word are represented as character-level embeddings {xij}M,C

i=1,j=1, where M

represents the number of words in a sentence and C represents the number of characters in each word.
The character encoder takes the inputs of character-level embeddings and extracts a global feature
vector {wc

i}
M
i=1 of each word. Second, in addition to character-level embeddings, we further include

word-level embeddings {ww
i }

M
i=1 as part of words’ representations. The word encoder encodes

both wc
i and ww

i to the final word representations {hi}Mi=1. Third, by calculating the sequential
information of {hi}Mi=1 in the sentence, the entity decoder generates the prediction of entity types of
each word. We introduce the details of the model as follows.

Character Encoder Following [14], we adopt the CNNs [10] to encode characters {xij}M,C
i=1,j=1.

We set the size of the receptive field to kc = 3 and conduct depthwise convolution on each channel.
The channel size in character encoder is set to dc = 50. The non-linear activation function between
convolutional layers is ReLU [12]. The output layer of the character encoder is max pooling which
outputs the global feature vector {wc

i}
M
i=1 of the word.

Word Encoder The word embeddings in our model consists of two parts of effect. First part is
extracted from the character encoder {wc

i}
M
i=1. In addition, we calculate extra word embeddings

{ww
i }

M
i=1. The dimension of the word embeddings is dw = 300. Thus, we represent the full word

embeddings as the concatenation of these two parts wf
i = [ww

i ,w
c
i ]. Similar to the character encoder,

we adopt the CNNs to encoder word-level features but without the last layer of max pooling. We set
the size of the receptive field to kw = 5 and also use ReLU as the activation function between layers.
The final word representations are denoted as {hi}Mi=1.

Entity Decoder We decode the entity labels using a LSTM model. With the obtained sequence of
word representations {hi}Mi=1, we recurrently decode each entity label first as a sequence of latent
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vectors {zi}Mi=1. Then, to predict the entity label of each word, we add an additional linear layer
to output the predicted logits before the Softmax layer. For the i-th word token in the sentence,
the entity decoder outputs the predicted probability distribution {pi,k}Kk=1 of the target entity type
{yi,k}Kk=1, where K is the number of total entity types and yi,k is a binary variable to indicate whether
the entity type k is the correct label class or not.

4 Counterfactual NER Learning Framework

4.1 Motivation: Counterfactual Bias Leads to Sample-Inefficient Learning

When directly training NER models on the data collected by the human-in-the-loop mechanism,
potentially there are severe counterfactual bias which leads to sample-inefficient model learning.
With the user feedback, the NER system naturally learns over time. However, with limited labeled
data initially, there are data selection bias and the initial NER model is biased and inaccurate. With
this inaccurate initial model, the correct entities are not able to be displayed as the top candidates and
receive positive feedback from the user, especially when there are many entities (e.g., as in [4]) but
only limited space is available to display the candidates. Without handling the non-displayed entities,
the NER model updated over time may also have a strong bias and inaccurate predictions, due to
the inconsistency between distributions of labeled and unlabeled samples [20]. As a result, the NER
model learning is not sample efficient and accurate over time.

The above bias is even more severe when the number of entity classes increases over time. In real
world, we want to enable the NER system to learn to classify data of new entity classes over time.
This can be achieved by the end users providing labels of new (unseen before) classes over time.
However, when an entity class is unseen in the initial training data but appear in the sentence to label,
this entity is unlikely to be selected as the top candidates and receive the positive feedback from the
user. Consider the use case 2 in Figure 1 and assume the ‘director’ class is unseen when obtaining the
current NER model. By the current NER model, ‘director’ cannot be displayed as the top candidate
and receive the positive feedback from the user. As a result, the above bias inevitably happens.

4.2 Doubly Robust User-in-the-Loop NER (ULNER-DR)

To eliminate the bias, not only displayed entities but also non-displayed entities should be considered.
To handle bias between distributions of displayed and non-displayed entities, we develop a counter-
factual NER learning framework. As in [5, 20], the doubly robust method for counterfactual learning
takes advantage of the IPS and DM: if either one of the two estimators is correct, then the estimation
is unbiased, increasing the chances of accurate ratio estimations. Besides, the doubly robust method
is simple and introduces limited extra computational cost. Therefore, we develop ULNER-DR: a
user-in-the-loop NER learning framework based on the doubly robust method.

For each round of interaction, the incoming batch of entity {xt}Lt=1 is required to be annotated. The
NER model will first give the predicted top-K entity types for each entity ŷt,j = f(xt). Then, the
human will give the feedback yt,j on the display types which is regarded as the ground truth for the
NER model f . Based on the prediction and the human feedback, we develop the cross-entropy loss
to train the NER model

lCE(ŷt,j , yt,j) = −yt,j log (p(ŷt,j)) . (1)

To alleviate the display bias, we introduce an imputation model by a uniform policy which is not a
trained policy but a policy randomly sample K types of entities and display to the human. In such
process, the policy online collects some data to further train an imputation model σ. Since we assume
such imputation model is unbiased, we use it to guide our NER model f to learn from the effect in
those non-displayed types. We further involve the prediction ŷσt,j = σ(xt) of the imputation model on
both the displayed types and the non-displayed types. Following [20], we develop the loss function

lDR =

K∑
j

(
lCE(ŷt,j , yt,j)− ωlCE(ŷt,j , ŷ

σ
t,j)

)
+

K̂∑
j

ωlCE(ŷt,j , ŷ
σ
t,j) (2)

in our counterfactual NER learning framework.
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Figure 2: Comparisons between different approaches on CoNLL-2003.
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Figure 3: Comparisons between different approaches on GMB.

5 Experiment

Dataset We evaluate different approaches on three datasets: CoNLL-2003 [19], GMB [1], and
Few-NERD [4]. CoNLL-2003 [19] includes 4 types of entities and contains about 14K training data
and 3.4K test data. The GMB [1] dataset includes 8 types of entities. This data has about 4.6K data,
and we split it into 2.5K training data and 0.8K test data. To study a more challenging and practical
setting, we evaluate different approaches on the Few-NERD dataset [4] which contains 66 classes of
entities. The Few-NERD dataset has about 188.2K training data and 37.6K test data.

Evaluation Setup and Metric To evaluate different approaches over time, the training process is
split into pretraining and online learning. In the pretraining, we assume only limited labeled data is
available. Specifically, we use 1% of the training data to train an initial NER model. Afterwards, the
initial NER model interacts with the end user on the rest 99% training data, receives user feedback,
and learns online. During the interactions, the NER model expects to receive feedback from the
end users. Similar to the evaluations in other interactive applications such as dialog systems and
interactive recommenders [3, 7, 15], one challenge is that it is unrealistic to access to user feedback
to any possible system actions. Similar to [3, 7, 15, 18], we develop a user simulator to provide user
feedback. We use the same model architecture and the same model capacity for the user simulator as
for the NER model. We train the simulator on the training data, by the cross-entropy loss in Equation
1 with the ground truth entity types as the target yi,k. The the user simulator interacts with our NER
system as follows. During each interaction, the NER model provides its top-K predicted candidates.
Then, the user simulator predicts the ground truth entity class. If the user simulator finds the correct
entity class in the candidates, it gives the positive feedback on the found entity class in the candidates.
Otherwise, it will provide a feedback indicating that none of the above is correct. Similar to [14],
we calculate the F1 score of the models on the test data after each interaction (i.e., time step). The
average results over 10 runs with standard errors are reported.

Baseline We report the results of our ULNER-DR when ω = 0.1 and 0.5. With a smaller ω,
the imputation model has less effect on the method. We further compare ULNER-DR to several
baselines: (i) ULNER-vanilla. This is an variant of ULNER-DR, by only using the imputation
model to calculate the loss function without interacting with human simulator. (ii) ULNER-IPS.
This is also an variant of ULNER-DR, by only considering the loss lCE(ŷt,j , yt,j)− ωlCE(ŷt,j) in
Equation 2. (iii) Imputation. Without using the trained NER model to interactively collect human
feedback, this method only interact with the human based on the uniform policy. The uniform policy
simply gives the candidate types by randomly sample K types from all entity types. With the only
collected data, we train the imputation model and construct the loss to fine-tune our NER model.
(iv) GroundTruth. By this approach, the NER model is trained with the ground truth data. That is,
during each interaction, it is assumed that the model can always receive the feedback indicating the
exactly correct labels. As discussed in Section 1 and Figure 1, this assumption is unrealistic especially,
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Figure 4: Comparisons between different approaches on Few-NERD.

when there are many entity classes while the space of displaying the entities to the users is limited.
Thus, the performance of GroundTruth is expected to be the upper bound of all other approaches. By
observing the gap between different approaches and GroundTruth, we can understand the learning
sample-efficiency of different approaches. As discussed in Section 3, in the user-in-the-loop NER
learning setting, the model needs to be frequently retrained while collecting human feedback. To
develop a practical solution, we accelerate the computation by following the model architecture [14]
for all the above baselines.

Results of Our Feedback Mechanism We validate our user-in-the loop feedback mechanism.
Specifically, we compare our approach ULNER-DR to GroundTruth, which has access to the perfectly
correct labels at each time and is the upper bound of ULNER-DR. The results are shown in Figure 2,
3 and 4. Our approach steadily improves over time and achieves very similar performance, compared
to GroundTruth. On the CoNLL-2003, ULNER-DR performs only 0.12% lower than GroundTruth.
On the Few-NERD, ULNER-DR performs only 2.17% lower than GroundTruth. While ULNER-DR
has the same performances as GroundTruth on GMB, after 16K time steps. Compared to the gaps
between GroundTruth and ULNER-DR, the gaps between GroundTruth and Imputation, ULNER-IPS
and ULNER-vanilla are much more significant. This validates that ULNER-DR is much more sample
efficient than Imputation, ULNER-IPS and ULNER-vanilla.

Results of Alleviating the Counterfactual Bias We validate the improvements by alleviating the
bias during the interactions. As discussed in Section 4.1, the bias is higher and learning becomes
more challenging when the number of classes is more limited in the training data at the initial time
step. To evaluate different approaches in this more challenging setting, we remove N classes in
the training data at the initial time step. Specifically, we set N = {0, 1, 2} for CoNLL-2003, set
N = {0, 2, 4} for GMB and set N = {0, 3, 7} for Few-NERD. The results are shown in Figure 2, 3
and 4. There are several observations. First, ULNER-DR outperforms ULNER-vanilla, by alleviating
the counterfactual bias. On CoNLL-2003, ULNER-DR has achieves 3.55% final improvement over
ULNER-vanilla. On Few-NERD, ULNER-DR gains 1.67% improvement over ULNER-vanilla. On
GMB, ULNER-DR and ULNER-vanilla have the similar performances. Second, when there are
more unseen new classes, our approach’s improvement over the baselines is more significant. On
CoNLL-2003, when there are 1 and 2 classes unseen, our approach gains 3.65% and 4.66% after
132K time steps respectively. On GMB, after 16K time steps, the improvement increases to 4.80%
when 4 classes are unseen. Third, on the more challenging dataset Few-NERD with more entity
classes, our approach’s improvements over the baselines are more significant. On Few-NERD, when
there are 3 classes unseen, after 128K time steps, our approach outperforms the baseline by 1.18%
and such improvement increases to 3.01% if 7 classes are unseen in the initial training stage.

6 Conclusion

The state-of-the-art NER models are usually based on deep neural networks, where the model training
relies on an adequate amount of labeled data. However, in practice it requires a lot of human effort
to obtain rich labeled data. With too limited labeled data to train an accurate NER model, it is
desirable to enable the NER model to receive user feedback and learn over time. To achieve this,
we develop a simple yet effective feedback mechanism to enable end users to easily provide labels
to the NER system. We further discover that learning NER models under the proposed feedback
mechanism is non-trivial, by identifying the counterfactual bias. To alleviate the bias and achieve
more sample-efficient learning, we develop a counterfactual NER learning framework.
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