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Abstract

Automatic speech recognition (ASR) is a capability which enables a program
to process human speech into a written form. Recent developments in artificial
intelligence (AI) have led to high-accuracy ASR systems based on deep neural
networks, such as the recurrent neural network transducer (RNN-T). However,
the core components and the performed operations of these approaches depart
from the powerful biological counterpart, i.e., the human brain. On the other hand,
the current developments in biologically-inspired ASR models, based on spiking
neural networks (SNNs), lag behind in terms of accuracy and focus primarily on
small scale applications. In this work, we revisit the incorporation of biologically-
plausible models into deep learning and we substantially enhance their capabilities,
by taking inspiration from the diverse neural and synaptic dynamics found in
the brain. In particular, we introduce neural connectivity concepts emulating the
axo-somatic and the axo-axonic synapses. Based on this, we propose novel deep
learning units with enriched neuro-synaptic dynamics and integrate them into the
RNN-T architecture. We demonstrate for the first time, that a biologically realistic
implementation of a large-scale ASR model can yield competitive performance
levels compared to the existing deep learning models. Specifically, we show that
such an implementation bears several advantages, such as a reduced computational
cost and a lower latency, which are critical for speech recognition applications.

1 Introduction

Speech is one of the most natural ways for human beings to communicate and to interact, which led
several research groups into developing speech recognition applications using computer systems.
However, even if the origin of the sound signal is the same for the humans and the computers, the
transformation, the feature extraction and the further processing differ significantly. Particularly,
the later often utilizes mathematical abstractions, such as the Hidden Markov Model (HMM) or
domain-specific models [1; 2; 3; 4]. More recently, AI researchers have increasingly resorted to deep
learning approaches [5; 6; 7; 8]. Especially three kinds of architectures have been widely adopted
in the literature [9; 10]: architectures based solely on recurrent neural networks (RNN), such as
the RNN transducer [11], architectures based on RNNs with the attention mechanism, such as the
listen attend and spell model (LAS) [12], and recently also transformer-based models, such as the
conformer [13]. While the transformer-based and attention-based models potentially provide higher
accuracy, they require the entire audio signal to compute the transcript and hence have a high latency.
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In contrast, the RNN-T architecture can produce a transcript while receiving the audio signal and
thus exhibits a lower latency, allows for real-time transcription and is even commercially deployed,
for example in mobile devices [14]. Recently, researchers have also tried to merge the RNN-T and
the LAS model in order to leverage the benefits of both [15; 16; 17].

Despite their great successes, all the aforementioned models take inspiration from biology only
remotely and depart considerably from the human speech recognition system. Researchers working
on biologically plausible spiking neural networks (SNNs), have used the leaky integrate-and-fire
(LIF) neurons for speech recognition [18; 19; 20]. However, there are several limitations of these
works. For example, many of them use simpler network architectures compared to the ones from the
ML domain. Moreover, often only parts of the network architecture employ biologically-inspired
units and the learning algorithms used are inferior to error-backpropagation [21; 22]. Thus, the
performance of those approaches lags behind their ML-based counterparts in terms of accuracy.

In this paper, we address these limitations by proposing an RNN-T architecture that incorporates
biologically-inspired neural units. Specifically, we leverage the diverse neuron and synapse types
observed in the brain and propose novel extensions of the LIF model with much richer dynamics.
We build upon the spiking neural units (SNUs) [23], which allows us to leverage the advanced
training capabilities from the ML domain [24; 25] that are essential for speech recognition [26].
We demonstrate that a state-of-the-art network incorporating biologically-inspired units can yield
competitive performance levels in a large-scale speech recognition application, while significantly
reducing the computational cost as well as the latency. In particular, our key contributions are:

• a novel neural connectivity concept emulating the axo-somatic synapses that enhances the
threshold adaptation in biologically-inspired neurons,

• a novel neural connectivity concept emulating the axo-axonic synapses that modulates the
output of biologically-inspired neurons,

• a biologically-inspired RNN-T architecture with significantly reduced computational cost
and increased throughput, which still provides a competitive performance to the LSTM-
based architecture.

2 Biologically-inspired models for deep learning

Typically, architectures of biologically-inspired neurons consider only axo-dendritic synapses, in
which the output from the pre-synaptic neuron travelling down the axon is modulated by the synaptic
weight and arrives at the post-synaptic dendrite. However, neural networks in the brain exhibit a
much more complex connectivity structure [27; 28]. In this work, we leverage this diversity and
investigate two additional types of synapses, namely the axo-somatic and the axo-axonic synapses,
and propose novel biologically-inspired models with richer dynamics. Figure 1a shows an illustration
of such neuron models and their connectivity via the various types of synapses.

The simplest biologically-inspired model is based on the LIF dynamics which employs axo-dendritic
synapses only, see dark blue color in Figure 1a. It can be abstracted into the form of a recurrent unit
using the SNU framework [30]. Figure 1b shows the basic configuration of the SNU. A layer of n
SNUs receiving m inputs is governed by the following equations:

st = g(Wxt + Hyt−1 + d · st−1 � (1− yt−1)), (1)

yt = h(st + b), (2)

where xt ∈ IRm represents the inputs at time step t, st ∈ IRn represents the membrane potentials,
the hidden states, , yt ∈ IRn represents the outputs , d ∈ IR represents the constant decay of the
membrane potential, b ∈ IRn represents the trainable firing threshold, W ∈ IRn×m and H ∈ IRn×n

denote the trainable input and the recurrent weight matrices. Note that although the SNU shares
similarities with an RNN, e.g., the term Wxt + Hyt−1 and the activation function h, it has a richer
dynamics, including a state decay and an internal state reset mechanism, i.e., d · st−1 � (1− yt−1).
As described in [23], the SNU can operate in principle in two different modes, one in which it yields
continuous outputs (called sSNU), i.e. h = σ, where σ denotes the sigmoid function, and one in
which it emits discrete spikes, i.e. h = Θ, where Θ indicates the Heaviside function. In this work,
we focus on the dynamics of the neuronal models, in particular on the different synapse types, and
thus mainly consider the sSNU variants.
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Figure 1: Illustration of different biological synapse and neuron types and their realization in
simulations. a A neural network example composed of three neuron and three synapse types along
with recordings of membrane potentials from the Human Brain Atlas [29]. b Visualization of SNU
modelling the LIF dynamics using solely axo-dendritic synapses. c Visualization of the SNU-a
modelling the adaptive threshold behavior using axo-somatic synapses, illustrated with yellow color
in a. d Visualization of the SNU-o using axo-axonic synapses, illustrated in orange in a.

One well-known property of neurons in the human brain is that they can adapt their firing threshold
across a wide variety of timescales [29; 31; 30]. In biology, there are complex mechanisms influencing
the firing threshold. In particular, it can be increased or decreased following the neuron’s own
dynamics, but also based on the activity of the other neurons [32; 33]. We propose a novel adaptive
SNU (SNU-a) that enhances the threshold adaptivity dynamics by emulating the axo-somatic synapses,
indicated with yellow color in Figure 1a. A layer of n SNU-a units is governed by

st = g(Wxt + Hyt−1 + d · st−1 � (1− yt−1)), (3)

bt = ρ� bt−1 + (1− ρ)�
(
Wax

t + Hay
t−1

)
, (4)

yt = h(st + βbt + b0), (5)

where b0 ∈ IRn represents the trainable baseline threshold, β ∈ IR represents a constant scaling
factor, bt ∈ IRn represents the state of the threshold at time t, ρ ∈ IRn represents the constant decay
of the threshold, Wa ∈ IRn×m and Ha ∈ IRn×n denote the trainable input and recurrent weight
matrices influencing the threshold via axo-somatic synapses. Figure 1c shows an illustration of the
SNU-a and the lower right part of Figure 1a shows an example of the membrane potential evolution.

Another type of neural connectivity in the human brain is via axo-axonic synapses, indicated with
orange color in Figure 1a. These synapses mediate the release of neurotransmitters from the pre-
synaptic to the post-synaptic neuron. Interneurons (INs), e.g. Chandelier INs, that connect via axo-
axonic synapses are found in the brain and often act as inhibitors for the post-synaptic neuron [34; 35].
However, it has also been found that such neurons may be excitatory as well [35]. We incorporate the
axo-axonic synapses into the SNU framework and propose SNU-o units, with the following equations

st = g(Wxt + Hyt−1 + d · st−1 � (1− ỹt−1)), (6)

ỹt = h(st + bt), (7)

yt = ỹt � o
(
Wox

t + Hoy
t−1 + bto

)
(8)

3



where ỹt represents the unmodulated output of the neuron driving the neural reset, yt represents the
modulated output of the neuron propagating to other connected neurons. The trainable parameters
Wo ∈ IRn×m and Ho ∈ IRn×n denote the input and recurrent weight matrices and bto ∈ IRn

denotes the trainable bias term that all three modulate the neuronal output via axo-axonic connections.
Note that in our simulations we use the sigmoid function as the activation for the output modulation
in Equation 8, i.e., o = σ, to mimic the inhibitory character of these synapses. However, by using a
different activation function o, the outputs can also be modulated in an excitatory manner. Figure 1d
shows an illustration of the SNU-o with the output modulation and the upper right part of Figure 1a
shows the connectivity motif along with an example of the membrane potential evolution.

As these novel units provide different dynamics than those of the predominantly used LSTM units,
we include a more detailed comparison of their dynamics in the supplementary material 1. Note that
although the subsequently presented models use only a single type of synapses per neuron, multiple
synapse types can be combined, resulting in further enriched neural dynamics.

3 RNN-T with biologically-inspired dynamics

The network architecture of RNN-T, illustrated in Figure 2, consists of two main subnetworks, the
encoding network and the prediction network, whose outputs are combined to ultimately form the
speech transcript. More details of the network architecture are presented in supplementary material 2.

In this work, we redesign the RNN-T architecture, using the novel units introduced in Section 2. In
order to do so, we follow a three-step approach. First, the units are introduced into the prediction
network, replacing the LSTMs, while the encoding network remains composed of LSTM units. In a
second step, we incorporate the sSNU variants into the encoding network only, i.e., the prediction
network remains composed of LSTMs. Finally, the sSNU variants are integrated into both network
parts and thus the full RNN-T architecture is composed of sSNU units. The encoding network carries
out a different task than the prediction network and hence different units might be better suited. Note
that a composition of diverse units and synapse types is also observed in the brain.

Speech recognition requires a large amount of compute resources. Thus, reducing the computational
cost is of paramount importance. Our proposed units not only reflect the biological inspirations, but
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Figure 2: Illustration of the RNN transducer architecture. An input vector xt, containing MFCC
features of a speech signal, is processed by the encoding network, here represented with sSNU-o
units. The prediction network, corresponding to a language model, here represented with sSNU-a
units, enhances the predictions based on the past output sequence of the RNN-T, i.e. yu−1. The joint
network forms the final predictions based on the outputs from both subnetworks.
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Table 1: RNN acronyms used in the result tables and details on the trainable parameters.

RNN Suffix Comment Thr.
Axo-

dendritic
Axo-

somatic
Axo-

axonic
sSNU Feedforward b W
sSNU R Recurrent b W,H
sSNU-a Adaptive thr. feedforward b0 W
sSNU-a R Adaptive thr. recurrent b0 W,H
sSNU-a Ra Adaptive thr. axo-somatic recurrent b0 W,H Ha

sSNU-o Output modulating feedforward b W Wo,bo

sSNU-o R Output modulating recurrent b W,H Wo,Ho,bo

additionally are simpler in terms of the number of gates and parameters than LSTMs. Hence, they
provide the potential to drastically reduce the computational cost and the transcription time.

4 Experiments and results

The simulations were performed using the Switchboard speech corpus comprising roughly 300 hours
of English telephone conversations. In order to be comparable to the state-of-the-art literature, we
closely followed the preprocessing, the evaluation, as well as the network architecture setup presented
in [26]. An LSTM-based version of this RNN-T architecture achieves a word error rate (WER) of
12.7%, which we consider as our baseline. We investigated various configurations of the sSNU
variants, listed with their abbreviations and trainable parameters in Table 1. In addition, supplementary
material 3 provides details about the dataset and its preprocessing, as well as hyperparameter settings.

Comparison of the word error rate. The first part of Table 2 summarizes the results of the
RNN-T architecture, where the sSNU variants were integrated into the prediction network. Several
configurations, e.g., sSNU R (12.4% WER), sSNU-a R (12.0% WER) and sSNU-o R (12.4% WER),
outperform the LSTM-based variant. In a second step, we evaluated the performance of the encoding
network composed of sSNU-a and sSNU-o units. The best performance is achieved with sSNU-o
R with 14.7% WER compared to 12.7% WER of the LSTM baseline. Finally, the sSNU units
are integrated into both subnetworks so that the RNN-T is solely based on sSNUs, see the last
part of Table 2. Consistent with the prior two cases, the RNN-T architecture achieved competitive
performance with 16.0% WER and 14.9% WER.

Evaluation of the inference time. The inference time is a critical metric for speech recognition that
depends on the model architecture and the efficiency of the neural units. In our case, this efficiency is
largely dominated by the number of multiplications, including vector-matrix and scalar multiplica-
tions, and the number of activations that the units require to compute. Thus, we accumulated the total

Table 2: Performance comparison of the RNN-T network for different configurations of the prediction
and the encoding network

Enc. RNN Pred. RNN WER (%) # Param. (%) # Multipl. (%) tinf (s) (%)

LSTM

LSTM 12.7 2.39M 100 2.39M 100 2.78 100
sSNU 15.1 8.45k < 1 9.2k < 1 2.71 97
sSNU R 12.4 0.60M 25 0.60M 25 2.76 99
sSNU-a 12.1 8.45k < 1 11.52k < 1 2.73 98
sSNU-a R 12.0 0.60M 25 0.60M 25 2.78 100
sSNU-o 12.6 16.90k < 1 17.66k <1 2.75 98
sSNU-o R 12.4 1.20M 50 1.20M 50 2.76 99

LSTM

LSTM

12.7 54.20M 100 54.20M 100 2.78 100
sSNU-a Ra 25.2 18.47M 34 18.50M 34 1.23 44
sSNU-o 23.2 17.27M 32 17.28M 32 1.22 44
sSNU-o R 14.7 27.10M 50 27.11M 50 1.76 63
LSTM LSTM 12.7 56.59M 100 56.58M 100 2.78 100
sSNU-o R sSNU-a R 16.0 27.70M 49 27.71M 49 1.64 59
sSNU-o R sSNU-o R 14.9 28.30M 50 28.30M 50 1.66 60
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Figure 3: Comparison of the transcription time of various architectures. The data points repre-
sent the mean time taken to decode utterances of different lengths. The markers indicate the various
architectures used and the error bars depict the standard deviation over 10 executions.

time, running on CPUs, for all computations involved during the inference of a single utterance. The
last three columns in Table 2 show the number of parameters, the number of multiplications as well
as the average time taken for the greedy decoding of an utterance with T = 388 input frames (~7.8s
of audio input).

When incorporating the sSNUs into the prediction network, the number of multiplications of this
subnetwork is reduced substantially, see the first part of Table 2. However, this is not fully reflected
in the transcription time, because this subnetwork contributes only a small fraction to the total
computational cost of the RNN-T. As one can see in the second part of Table 2, when the LSTM
units of the encoding network are replaced with sSNUs, the total number of parameters is reduced by
more than 50% and this results in a more than ~40% reduction of the inference time. A similar trend
can be observed in the final part of Table 2, where the RNN-T is solely composed of sSNUs. In this
case, the RNN-T achieves a competitive WER, albeit using 50% fewer parameters and experiencing
a ~40% reduce inference time.

Figure 3 depicts a comparison of the transcription time to decode utterances of various lengths for
selected models. To ensure reproducibility and consistency, the examples were chosen such that the
transcripts of all models were identical, and the timing results were averaged over 10 repetitions.
A general observation is that the time taken to transcribe utterances increases proportionally to the
utterance length. The RNN-T architecture composed of LSTM units is indicated with red dots and is
the slowest among the evaluated models. Depending on the sSNU variant used, the inference time
can be reduced. For example, the RNN-T using sSNU-o units for the encoding and sSNU-o units
for the prediction network (6x640 sSNU-o R, 1x768 sSNU-o R), has an approximately 40% reduced
inference time.

5 Conclusions

In this work we combine insights from neuroscience with a state-of-the-art network architecture from
machine learning and apply it to the task of speech recognition. We resort to the diverse types of
synapses present in the brain and enhance the dynamics of the commonly used LIF neuron model
with a threshold adaptation mechanism based on axo-somatic synapses as well as with an output
modulating mechanism based on the axo-axonic synapses. We successively integrate those novel
units into the RNN-T architecture and not only demonstrate that end-to-end speech recognition with
biologically-inspired units is possible, but also that they achieve a competitive performance level of
14.9% WER, compared to 12.7% WER of the LSTM-based RNN-T. Moreover, the introduced units
are simpler than LSTMs, so that the computational costs, as well as the inference time can be reduced
by 50% and 40% respectively. Finally, it is worth mentioning that biology provides an abundance of
mechanisms, which could further enrich the dynamics of neurons, and that are not yet covered in
practical neural networks. Our simulation results indicate that such effects can potentially bolster the
performance of biologically-inspired neural units and are therefore an essential step going forward.
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