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Abstract

Prompting language models (LMs) with training examples and task descriptions
has been seen as critical to recent successes in few-shot learning. In this work, we
show that finetuning LMs in the few-shot setting can considerably reduce the need
for prompt engineering. In fact, one can use null prompts, prompts that contain
neither task-specific templates nor training examples, and achieve competitive
accuracy to manually-tuned prompts across a wide range of tasks. While finetuning
LMs does introduce new parameters for each downstream task, we show that this
memory overhead can be substantially reduced: finetuning only the bias terms
can achieve comparable or better accuracy than standard finetuning while only
updating 0.1% of the parameters. All in all, we recommend finetuning LMs for
few-shot learning as it is more accurate, robust to different prompts, and can be
made nearly as efficient as using frozen LMs.

1 Introduction

Few-shot learning—the ability to learn tasks with limited examples—is an important academic and
practical challenge [5]. In state-of-the-art NLP, few-shot learning is performed by reformulating tasks
as natural language “prompts” and completing those prompts with pre-trained language models [2, 15].
Prompts that are well-designed can substantially improve accuracy [21, 11]. However, finding these
prompts is difficult: it requires a non-trivial combinatorial search over the prompt’s wording (a.k.a.
its pattern or template), whether and how to include training examples, and how to convert language
model probabilities into class predictions. Consequently, prompts are often designed using human
intuition that is hard to replicate and apply in a principled manner [12].

In this work, we seek to mitigate prompt engineering by identifying a class of simple prompts
that are effective across many tasks for masked language models (LMs). We find that, when using
prompt-based finetuning [15, 3], the prompt requires less optimization than previously thought; in
fact, the pattern and training examples can be completely cut out (e.g., Figure 1, right). These null
prompts—simple concatenations of the inputs and the [MASK] token—achieve comparable accuracy
to manually-written patterns while drastically simplifying prompt design: users only need to decide
the label names (a.k.a. the verbalizer) and where to place the [MASK] token. The effectiveness of
null prompts also challenges the common wisdom that the success of few-shot learning is due to
inductive biases present in the prompt.

A key drawback of prompt-based finetuning is that it has large memory requirements for each new
downstream task (Figure 1, left). In contrast, in-context learning [2] allows reusing large-scale LMs
as is, but it requires significant prompt engineering. To determine whether memory efficiency and
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Figure 1: Different Methods of Few-Shot Learning. Right: We visualize different types of prompts
for QQP. We denote input fields using curly brackets {}, the manually-written pattern using magenta,
and verbalizers using green. We show that null prompts, ones that do not contain training examples
or task-specific patterns, can achieve competitive accuracy. Left: We compare different methods for
model finetuning. Updating only the masked LM’s bias terms (using BitFit) achieves competitive
accuracy while only updating 0.1% of the parameters.

simple prompt selection can be simultaneously achieved, we experiment with either: (a) making
prompts for in-context learning similarly easy to create, or (b) making prompt-based finetuning more
memory efficient. For (a), we simplify prompt engineering for in-context learning by automatically
tuning the prompt’s tokens or embeddings, an approach that has been successful in the non-few-shot
setting [17, 7]. For (b), we study lightweight finetuning alternatives that update a smaller set of
parameters: BitFit [1], Adapters [4], and calibration layers [21].

We show that the latter approach—prompt-based finetuning with lightweight updates—is considerably
more successful. In particular, updating only the model’s bias terms (BitFit) can achieve competitive
or better few-shot accuracy than standard finetuning while only updating 0.1% of the parameters. On
the other hand, automated prompt tuning for in-context learning generally fails to find prompts that
are competitive with manually engineered ones. Taken together, our results show that prompt-based
finetuning is preferable because it is more accurate, more robust across prompts, and can be made
nearly as efficient as using frozen LMs.

2 Prompting Language Models

We use masked LMs for few-shot learning. Following Schick and Schütze [15], we have:

• a pre-trained masked LM, with T denoting its token vocabulary and T ∗ the set of all token
sequences.

• a small set of training inputs xi ∈ X and their corresponding labels yi ∈ Y .
• a pattern P : X → T ∗ that maps inputs to cloze questions containing a single [MASK] token.

Additionally, a verbalizer v : Y → T that maps each label to a single vocabulary token. We call
the pattern and verbalizer together the prompt.

In our work, we consider different ways of constructing the prompt (Section 2.1) and updating the
masked LM’s parameters (Section 2.2). Table A1contains an overview of existing prompting methods
and the settings they are evaluated in.

2.1 Constructing the Prompt

The prompt is important: different prompts can cause accuracy to vary from near chance to near
state-of-the-art [21]. This importance, as well as the nontrivial nature of manually tuning the prompt,
has led to growing interest in methods for automatic prompt design [17, 3, 11]. These methods search
for elements such as (1) the text of the pattern, (2) the tokens in the verbalizers, and (3) whether and
how training examples are prepended before the test input. Unfortunately, while automated prompt
search can match the accuracy of manual tuning, it introduces its own complexities. For example, the
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prompts from Gao et al. [3] achieve comparable results to manually designed prompts but are found
using large generative models and careful validation.

In this paper, we show that prompt-based finetuning (see Section 2.2) can considerably reduce the
importance of the prompt. This does not contradict past work—the extreme importance of the prompt
is only true when models are not finetuned.

2.2 Finetuning the LM

In-context Learning The most well-known strategy for few-shot learning is using a frozen LM [2].
This strategy relies solely on in-context learning (a.k.a. priming), where the LM learns by conditioning
on the prompt rather than updating its parameters. In-context learning is most successful when using
very large (e.g., billions of parameters) LMs, as these models better leverage the prompt [2].

Prompt-Based Finetuning Rather than using frozen LMs, prompt-based finetuning methods fine-
tune all of the LM’s parameters [15, 14, 3]. For masked LMs, this is done by constructing training
examples that contain a [MASK] token and finetuning the masked LM to generate the correct verbal-
izer token in that position.

The main advantage of prompt-based finetuning over in-context learning is that it achieves higher
accuracy, especially when the LM is relatively small [16]. The main downside is that the same model
can no longer be reused across different tasks, thus reducing memory efficiency. In this paper, we
will show an additional benefit to prompt-based finetuning—it makes prompt engineering easier.
Moreover, we will show that the memory inefficiency of prompt-based finetuning can be drastically
mitigated using lightweight finetuning alternatives.

3 Experimental Setup

3.1 Datasets and Hyperparameter Tuning

We use the following classification datasets from GLUE [19] and SuperGLUE [18]: BoolQ, CB,
MNLI, MRPC, QNLI, QQP, RTE, and SST-2.3

To build few-shot datasets, past work collects K examples from each label for training and K
examples from each label for development [3]. Despite this setup often being denoted as K-shot
learning, it effectively uses 2K examples and splits the examples evenly into train and development.
We instead propose to use cross-validation to perform more principled model selection. Concretely,
we sample 2K examples from each label and use 4-fold cross-validation to determine the best
hyperparameters. After finding the best hyperparameters, we train on the first K examples and early
stop on the second K examples. We use K = 16 following past work [3].

We sample our examples from each dataset’s original training set. Since few-shot learning can be
high variance, we sample the examples with 10 different random seeds and report the mean and
variance of the model performance. We use each dataset’s original development set for our final
evaluation and use the standard evaluation metrics (accuracy or F1) associated with each dataset. We
do not check the final evaluation metrics during any tuning of the hyperparameters to ensure that we
are doing “true” few-shot learning [12].

3.2 Masked Language Models

Following past work [16], we use the RoBERTa [large, 330M params, 10] and ALBERT [xxl-v2,
223M params, 6] masked LMs provided by the HuggingFace transformers library [20].

3.3 Comparing Few-shot Methods by # Wins

The results for different few-shot learning methods can be quite different across datasets and seeds for
the training set [21, 15]. To compare different methods at a high level, we use a metric denoted as #
Wins: the number of datasets that a given method performs significantly better than all other methods

3We also evaluated on WiC and WNLI. We omit these results because all models achieved near-random
accuracy.

3



Boo
lQ CB

M
NLI-m

M
NLI-m

m
M

RPC
QNLI

QQP
RTE

SST-2
0

25

50

75

100
RoBERTa (Large)

# Wins
0

5

Boo
lQ CB

M
NLI-m

M
NLI-m

m
M

RPC
QNLI

QQP
RTE

SST-2
0

25

50

75

100
ALBERT (XXLarge-V2)

# Wins
0

2

4

Manual Prompt (Prior)
Manual Prompt (w/o Engineering)

Prompt Tuning
Null Prompt

Null Verbalizer
Null Prompt + Verbalizer

[CLS] Finetuning

Figure 2: Simplifying the Selection of Prompts. We apply prompt-based finetuning in conjunction
with six different types of prompts. We report accuracy or F1 on each dataset.

on. We compute this metric for a given dataset by first performing a Welch’s t-test to determine if
there is a significant difference in accuracy for each pair of methods. The method which performs
better than most other methods is considered the “winner” of the task and its # Wins is incremented by
1. There are multiple winners in the case of a tie. See Figure A5 in the Appendix for a demonstration.

4 Simplifying Prompt Engineering

In this section, we run prompt-based finetuning and ablate different elements of the prompt. We
consider the following ablations:

• Manual Prompt (Prior): We use manually-written prompts from Schick and Schütze [15, 16],
and Gao et al. [3]. We show the patterns and verbalizers in Appendix A2.

• Manual Prompt (w/o Engineering): We simulate standard prompt design by manually writing
one prompt for each task using our intuition. We show the prompts in Appendix A3.

• Prompt Tuning: Inspired by Liu et al. [9] and Lester et al. [7], we use the pattern from Manual
Prompt (Prior) but randomly initialize the embeddings of the tokens in the pattern and learn them
using gradient-based optimization. This ablates the gains from human-designed patterns.

• Null Prompt: We use the same verbalizer as Manual Prompt (Prior) but use a pattern that consists
of only the input fields and a [MASK] token. This ablates the pattern entirely.

• Null Verbalizer: We use the same pattern as Manual Prompt (Prior) but select tokens at random
from the vocabulary for the verbalizer. This ablates the gains from a human-designed verbalizer.

• Null Prompt + Verbalizer We use both null prompts and random tokens for the verbalizer.

In all cases, we finetune all of the masked LM parameters. We show the accuracy of the above
prompts as well as traditional finetuning (using a [CLS] token and a classification head) in Figure 2.

Manual Prompts Perform Best The manually-written prompts from prior work perform best on
average for both models. On the other hand, our manual prompts (w/o Engineering) are noticeably
worse than the ones from prior work and are outperformed by many other methods.

Null Prompts Are Competitive In many cases, prompt tuning and null prompts perform comparably
to manually-written prompts, especially for RoBERTa. For instance, both of these methods outperform
our manually-written prompts in terms of # Wins. These results show that one can achieve competitive
few-shot results without resorting to any tuning of the prompt.

From an analysis perspective, these results also show that effective few-shot learning can be accom-
plished without any inductive bias from a manually written pattern. In fact, combining null prompts
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Figure 4: Parameter-Efficient Prompt-based Finetuning. We perform prompt-based finetuning
using different lightweight finetuning schemes. We show the accuracy or F1 on each dataset for
RoBERTa-large.

with null verbalizers, which involves no human design at all, still significantly outperforms standard
[CLS] finetuning for numerous tasks (3 for RoBERTa and 5 for ALBERT at p = 0.05). This shows
that some of the effectiveness of prompt-based finetuning is due to its basic setup, i.e., predicting on
a [MASK] token with an MLM head.

5 Achieving Simplicity and Efficiency

Thus far, we have shown that prompt-based finetuning can simplify prompt engineering at the cost of
memory inefficiency—a new set of parameters must be learned for each task. This is in contrast to
in-context learning, which holds all model weights fixed but is heavily influenced by small prompt
modifications [21, 11]. In this section, we investigate how to achieve both memory efficiency and
simple prompts. Concretely, in Section 5.1 we try to simplify prompt engineering for in-context
learning by tuning the prompt, and in Section 5.2, we reduce the number of learned parameters for
prompt-based finetuning.

5.1 Simplifying In-Context Learning With Prompt-Only Tuning

Here, we try to make prompt engineering for in-context learning as simple as prompt-based finetuning
by automatically finding the prompt. We focus on the emerging class of methods that do prompt-only
tuning: learning the prompt while keeping the rest of the model fixed [17, 7]. We consider:

• AUTOPROMPT: Following [17], we search for discrete tokens to use in the input instead of
manually-designed patterns.

• Prompt Tuning (Short): We use the same prompt tuning approach described in the previous
section but we keep the masked LM fixed.

• Prompt Tuning (Long): We increase the number of learned prompt embeddings to 20 in order to
expand the learning capacity.
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For reference, we also report the results from prompt-based finetuning with null prompts. We show
the results for RoBERTa in Figure 3. We find that only tuning the prompt is relatively unsuccessful.
First, on average it fails to match the performance of manually designed prompts. Second, all
methods struggle to match the accuracy of prompt-based finetuning. In fact, for many of the datasets,
prompt-only methods perform worse by a wide margin (e.g., 40% absolute difference in F1 score on
CB). This shows that finetuning masked LMs in the few-shot setting leads to substantially higher
accuracy than prompt-only tuning.

Our Results versus Recent Prompt Tuning Work We find that only tuning the prompt performs
substantially worse than finetuning the entire LM. This is in contrast to recent work, which argues
that prompt-only tuning is competitive with finetuning [7, 8]. We believe these are not contradictions
but rather differences in the models and settings. Li and Liang [8] focus on left-to-right LMs for
generation tasks, whereas we focus on masked LMs for classification tasks. This may explain the
difference in the results. Moreover, Lester et al. [7] show that prompt-only tuning becomes less
competitive as models get smaller. Consequently, although we find that finetuning a masked LM is
superior to prompt-only tuning, there may be other settings in which they fair similarly.

5.2 Memory-Efficient Finetuning

Given the inadequacies of prompt-only tuning, we next study if prompt-based finetuning can be
made memory-efficient. To do so, we focus on reducing the number of trainable parameters, taking
inspiration from recent work in the non-few-shot setting. We consider four methods:

• Adapters: We use Adapters [4], neural networks layers that are inserted between the feedforward
portion of the Transformer architecture. We use the default Adapters hyperparameters from Houlsby
et al. [4] (≈ 107 parameters per task).

• BitFit: Following Ben-Zaken et al. [1], we only update the bias terms inside the Transformer
(≈ 105 parameters per task).

• LM Head Tuning: We update the embeddings in the MLM output layer that are associated with
the verbalizer tokens (≈ 103 parameters per task).

• Calibration: Following Zhao et al. [21], we learn an affine transformation on top of the logits
associated with the verbalizer tokens (≈ 101 parameters per task).

We run prompt-based finetuning for each method with the prompts from Manual Prompts (Prior). We
also report the accuracy of finetuning all of the parameters for reference.

Results We show the results in Figure 4. There are diminishing returns as the parameter count
is increased. In particular, substantial gains are made when going from calibration to LM head
tuning to BitFit, however, there is either a marginal improvement or even a decrease in performance
when going to Adapters or All Parameters. The BitFit method provides the best accuracy-efficiency
trade-off, and it even outperforms finetuning all of the parameters in terms of # Wins. This suggests
that updating all of the LM’s hundreds of millions of parameters on only 16 data points is suboptimal.

6 Conclusion

Two high-level methods exist in few-shot prompting: using a frozen LM (in-context learning)
and finetuning the LM on the few training examples (prompt-based finetuning). In this work, we
demonstrate two new advantages of prompt-based finetuning. First, we show that it is robust to
different choices of the prompt. In fact, there is a simple class of prompts—null prompts—that can
be flexibly applied to different tasks without degrading performance relative to manually written and
learned prompts. Second, we demonstrate that prompt-based finetuning can be made memory efficient:
finetuning only the bias terms (BitFit) achieves comparable or better accuracy than finetuning all the
parameters while being 1000x more memory efficient. Taken together, using null patterns with BitFit
is an approach that is efficient, simple-to-tune, and competitive in accuracy. Code and instructions for
reproducing our results are available at: https://www.github.com/ucinlp/null-prompts.
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A Appendix

Method Finetuned Params Prompt Design Few-shot

AUTOPROMPT [17] None Learned (Discrete) 7
Prompt Tuning [7] Prompt Token Embeds Learned (Continuous) 7
OPTIPROMPT [22] Prompt Token Embeds Learned (Continuous) 7
Soft Prompts [13] All Contextualized Embeds Learned (Continuous) 7

GPT-3 [2] None Manual 3
PET [15] All Manual 3
LM-BFF [3] All Learned (Discrete) 3
P-Tuning [9] All + Prompt Token Embeds Learned (Continuous) 3
Null Prompts + Bitfit (Ours) Bias Terms None 3

Table A1: Overview of Existing Work on Prompting. Finetuned Params indicates the parameters
altered during training. Prompt Design indicates how prompts are created; we use null prompts.
Few-Shot indicates using few-shot training and validation sets.

Figure A5: How # Wins are Computed. For a given dataset, we perform a Welch’s t-test to
determine if there is a significant difference in accuracy for each pair of methods. The method which
performs better than most other methods (i.e., the row with the most yellow squares; BitFit in this
case) is considered the “winner” of the task, and its # Wins is incremented by 1. In the figure above,
we show a subset of methods evaluated on a single dataset.
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Dataset Pattern Verbalizer

BoolQ {passage}. Question: {question}? Answer: [MASK]. True: "Yes"
False: "No"

CB {premise}? [SEP] [MASK], {hypothesis}
entailment: "Yes"
contradiction: "No"
neutral: "Maybe"

MNLI {sentence1}? [SEP] [MASK], {sentence2}
entailment: "Yes"
contradiction: "No"
neutral: "Maybe"

MNLI-mm {sentence1}? [SEP] [MASK], {sentence2}
entailment: "Yes"
contradiction: "No"
neutral: "Maybe"

MRPC {sentence1} and {sentence2} have [MASK] meanings. 0: "different"
1: "similar"

QNLI {question}? [SEP] [MASK], {sentence} entailment: "Yes"
not_entailment:
"No"

QQP {question1} and {question2} have [MASK] meanings. 0: "different"
1: "similar"

RTE {sentence1}? [SEP] [MASK], {sentence2} entailment: "Yes"
not_entailment:
"No"

SST-2 {sentence} It was [MASK] . 0: "terrible"
1: "great"

Table A2: Prompts denoted as “Manual Prompts (Prior)”. We use prompts inspired from past
work [15, 3]. The fields between curly brackets indicate dataset-specific inputs. Predictions are made
on the [MASK] token in each prompt. For prompt tuning, we tune the tokens in the pattern.
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Dataset Pattern Verbalizer

BoolQ Passage: {passage} Question: {question} Answer: [MASK]. True: "true"
False: "false"

CB Premise: {premise} Hypothesis: {hypothesis} Label: [MASK]
entailment: "yes"
contradiction: "no"
neutral: "maybe"

MNLI Premise: {sentence1} Hypothesis: {sentence2} Label: [MASK]
entailment: "yes"
contradiction: "no"
neutral: "maybe"

MNLI-mm Premise: {sentence1} Hypothesis: {sentence2} Label: [MASK]
entailment: "yes"
contradiction: "no"
neutral: "maybe"

MRPC {sentence1} and {sentence2} are the [MASK]. 0: "different"
1: "same"

QNLI Question: {question} Sentence: {sentence} Label: [MASK] entailment: "yes"
not_entailment: "no"

QQP {question1} and {question2} are the [MASK]. 0: "different"
1: "same"

RTE Premise: {sentence1} Hypothesis: {sentence2} Label: [MASK] entailment: "yes"
not_entailment: "no"

SST-2 {sentence} Overall my impression is [MASK] . 0: "bad"
1: "good"

Table A3: Prompts denoted as “Manual Prompts (w/o Engineering)”. We manually write one
prompt for each task, using only our intuition, and do not tune or edit them in any way after evaluating
them. Fields between curly brackets indicate dataset-specific inputs. Predictions are made on the
[MASK] token in each prompt. For prompt tuning, we tune the tokens in the pattern.

Dataset Pattern Verbalizer

BoolQ {passage} {question} [MASK] True: "Yes"
False: "No"

CB {premise} [MASK] {hypothesis}
entailment: "Yes"
contradiction: "No"
neutral: "Maybe"

MNLI {sentence1} [MASK] {sentence2}
entailment: "Yes"
contradiction: "No"
neutral: "Maybe"

MNLI-mm {sentence1} [MASK] {sentence2}
entailment: "Yes"
contradiction: "No"
neutral: "Maybe"

MRPC {sentence1} {sentence2} [MASK] 0: "different"
1: "similar"

QNLI {question} [MASK] {sentence} entailment: "Yes"
not_entailment:
"No"

QQP {question1} {question2} [MASK] 0: "different"
1: "similar"

RTE {sentence1} [MASK] {sentence2} entailment: "Yes"
not_entailment:
"No"

SST-2 {sentence} [MASK] 0: "terrible"
1: "great"

Table A4: Null Prompts used for results in Sections 4 and 5.
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