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Abstract

Pre-training and then fine-tuning large language models is commonly used to
achieve state-of-the-art performance in natural language processing (NLP) tasks.
However, most pre-trained models suffer from low inference speed. Deploying such
large models to applications with latency constraints is challenging. In this work,
we focus on accelerating the inference via conditional computations. To achieve
this, we propose a novel idea, Magic Pyramid (MP), to reduce both width-wise
and depth-wise computation via token pruning and early exiting for Transformer-
based models, particularly BERT. The former manages to save the computation via
removing non-salient tokens, while the latter can fulfill the computation reduction
by terminating the inference early before reaching the final layer, if the exiting
condition is met. Our empirical studies demonstrate that compared to previous
state of arts, MP is not only able to achieve a speed-adjustable inference, but also
to surpass token pruning and early exiting by reducing up to 70% giga floating
point operations (GFLOPs) with less than 0.5% accuracy drop. Token pruning and
early exiting express distinctive preferences to sequences with different lengths.
However, MP is capable of achieving an average of 8.06x speedup on two popular
text classification tasks, regardless of the sizes of the inputs.

1 Introduction

In the past few years, owing to the success of Transformer-based [20] pre-trained models, such
as BERT [1], RoBERTa[11], GPT2[13], etc., we have experienced a performance breakthrough
in natural language processing (NLP) tasks. With a small amount of fine-tuning, the pre-trained
models can achieve state-of-the-art performance across different tasks [1, 11, 13]. Nevertheless, the
outperforming models are evaluated in offline settings, and the inference latency is not assessed or
considered as a quality factor.

However, adapting and deploying such large pre-trained models to production systems (e.g., online
shopping services) is not straightforward due to the latency constraint and the large volume of
incoming requests (e.g., millions of requests per second). Prior to this work, researchers have
proposed to compress a large model via either model pruning [12, 2, 6] or token pruning [22, 3, 9]. In
addition, compressing a large teacher model into a compact model via knowledge distillation has been
studied extensively in the past [14, 17, 18, 7, 4]. Finally, another line of work targets on plugging
multiple sub-classifiers into deep neural networks to enable a flexible computation on demand, a.k.a.,
early exiting [19, 8, 15, 10]

The token pruning concentrates on a width-wise computational reduction, whereas the early exiting
succeeds in a depth-wise inference acceleration. Our study shows that for certain tasks where the
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Figure 1: Speedup of LTP (token pruning), FastBERT (early exiting) and MP (ours) under different
sequence lengths on Yelp and AG news. X axis is sequence length, while Y axis is speedup. short:
1-35 tokens; middle: 35-70 tokens; long: >70 tokens

input data is diverse (in terms of sequence length), these two latency reduction methods perform in
the opposite direction. As illustrated in Figure 1 (a), speedup (Y axis) achieved via early exiting
(FastBERT) decreases for long input sizes (X axis). However, token pruning (LTP) speedup rises as
the input size increases. We believe these two approaches are orthogonal and can be combined into a
single model to maintain the latency reduction gain across the variable input length. In this work,
we present a novel approach, Magic Pyramid (MP), to encourage a speed-adjustable inference. The
contribution of this paper includes:

• Our empirical study shows that token pruning and early exiting are potentially orthogonal.
This motivates further research on employing the two orthogonal inference optimization
methods within a single model for model inference acceleration.

• We propose a method (referred to as Magic Pyramid) to exploit the synergy between token
pruning and early exiting and attain higher computational reduction from width and depth
perspectives.

• Compared to two strong baselines, our approach can significantly accelerate the inference
time with an additional 0.5-2x speedup but less than 0.5% degradation on accuracy across
five classification tasks.

2 Related Work

Large pre-trained models have demonstrated that increasing the model capacity can pave the way
for the development of superior AI. However, as we have limited resources allocated for production
systems, there has been a surge of interest in efficient inference. Previous works [14, 17, 18, 7, 4]
have opened a window into an effective model compression via knowledge distillation (KD) [5]. The
core of KD is to use a compact student model to mimic the behavior or structure of a large teacher
model. As such, the performance of the student model is as accurate as its teacher, but consuming
less computation.

Other researchers approach efficient inference by manipulating the original model. One elegant
solution is pruning, which can reduce the computation by removing non-essential components.
These components can be either model parameters (model pruning) [12, 2, 6] or tokens (token
pruning) [22, 3, 9]. In addition, one can boost the speed of the numerical operations of a model
through quantization [24, 23, 16].

The aforementioned works lack flexibility in terms of the speedup, albeit some success. To satisfy
varying demands, we have to train multiple models. Since deep neural networks can be considered as
a stack of basic building blocks, a list of works introduces early exiting [19, 8, 15, 10], which attaches
a set of sub-classifiers to these sub-networks to encourage an adjustable inference within a single
model, when needed. As opposed to the prior works, which focus on the one-dimensional speedup,
this work takes the first step to superimpose token pruning on early exiting. Our empirical studies
confirm that these two approaches can accelerate the inference collaboratively and significantly.

2



3 Methodology - Proposed Method

Prior to this work, token pruning and early exiting have been proven to be effective in accelerating the
inference [22, 3, 15, 10, 9]. However, as shown in Figure 1, these approaches fall short of reducing
the latency at two ends, i.e., short sequences and long sequences. For example, Figure 1 (a) shows
that LTP (token-pruning) provides the highest speed-up for long input sequences. While FastBERT
(early exiting) speedup drops as the input size increases from short to long. Therefore we propose a
novel approach: Magic Pyramid (MP), which benefits from a combination of token pruning and early
exiting. Figure 2 provides a schematic illustration of MP. First of all, MP enables to terminate an
inference at any layer when needed. Second, with the increase of the depth of Transformer, redundant
tokens can be expelled. The detailed designs are provided in the rest of this section.

As a visual treat , the film is almost perfect
(Layer 1; 10 tokens)

a visual treat the film is perfect
(Layer 4; 7 tokens)

a treat film is perfect
(Layer 8; 5 tokens)

film perfect
(Layer 12; 2 tokens)
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is confident
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pos

pos
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No
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Figure 2: Schematic illustration of magic pyramid for a sentiment analysis task

Transformer architecture Owing to it outstanding performance, Transformer [20] has become a
de facto model for NLP tasks, especially after the triumph of pre-trained language models [1, 11, 13].
A standard Transformer is comprised of L stacked Transformer blocks: {Bl}Ll=1, where each block
Bl is formulated as:

H ′l = MultiHead(Hl−1) (1)

Hl = FFN(H ′l) (2)

where H ∈ Rn×d and H ′ ∈ Rn×d are the hidden states. n is sequence length, while d is the feature
dimension. MultiHead and FFN are multi-head attention module and position-wise feedforward
module respectively. We omit Residual module and Layernorm module in between for simplicity.

Early exiting As shown in Figure 2, in addition to the Transformer backbone and a main classifier,
one has to attach an individual sub-classifier module (subclassifier(·)) to the FFN of each Trans-
former block Bi. As such, one can choose to terminate the computation at any layer, when a halt
value τ is reached.

Following [10], the subclassifier(·) consists of a Transformer block B, a pooling layer Pooler and a
projection layer Projector with a softmax function. Pooler extracts the hidden states of [CLS] as
the representation of the input, while Projector projects the dense vector into N -class logits.

Similar to [10], we leverage a two-stage fine-tuning to enhance the performance of sub-classifiers via
knowledge distillation. Specifically, we first train the Transformer backbone and the primary classifier
through a standard cross entropy between the ground truth y and the predictions y′. Afterward, we
freeze the backbone and the primary classifier, but train each subclassifier(·) via a Kullback–Leibler
divergence:

DKL(ps, pt) =

N∑
i=1

ps(i) ∗ log
ps(i)

pt(i)
(3)

where ps and pt are the predicted probability distribution from the subclassifier(·) and the main
classifier respectively. Since there are L − 1 sub-classifiers, the loss of the second stage can be
formulated as:

L(ps1 , ..., psL−1
, pt) =

L−1∑
l=1

DKL(psi , pt) (4)
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Once all modules are well-trained, we can stitch them together to achieve a speed-adjustable inference.
At each layer l, we first obtain the hidden statesHl from the Transformer blockBl. Then a probability
psl can be computed from subclassifier(Hl). One can use psl to calculate the uncertainty ul via:

ul =

∑
psl log psl
log 1

N

(5)

where ul is bound to {0, 1}. If ul ≤ τ , we can terminate the computation. A larger τ suggests a
faster exit.

column mean

Figure 3: An example of attention probability in a single head. Darker color suggests a higher
attention score. The bottom heatmap is the column mean of the attention matrix.

Token pruning The core of the Transformer block is the MultiHead module, which is responsible
for a context-aware encoding of each token. Notably, we compute pairwise importance among all
tokens within the input via self-attention. The attention score of each head h between xi and xj is
obtained from:

Ah(xi, xj) = softmax(
H(xi)

TWT
q WkH(xj)√
d

) (6)

where H(xi) ∈ Rd and H(xj) ∈ Rd are the hidden states of xi and xj respectively. Wq ∈ Rdh×d

and Wk ∈ Rdh×d are learnable parameters. dh is set to d/Nh, and Nh is the number of heads used
in the Transformer block B. Since we have to conduct n2 such operation to acquire an attention
score matrix A ∈ Rn×n, the complexity of MultiHead quadratically scales with the sequence length.
Therefore, we encounter a computational bottleneck when working on long sequences. However, if
we take the average of A along the ith column, we notice that the different tokens have distinctive
scores as shown in Figure 3. Tokens with large scores tend to be more salient than others, as they
receive more attention. As such, we can prune the non-salient tokens to save the computation. We
formally define an importance score of each token xi at layer l as:

sl(xi) =
1

Nh

1

n

Nh∑
h=1

n∑
j=1

Ah
l (xi, xj) (7)

Before this work, researchers have proposed two approaches to remove the unimportant tokens based
on sl(·): i) top-k based pruning and ii) threshold-based pruning [3, 22, 9]. In this work, we follow [9],
which leverages a layer-wise learnable threshold to achieve a fast inference and is superior to other
works[22, 3]. We first fine-tune Transformer parameters Θ on a downstream task. Then we introduce
a two-stage pruning scheme to seek a suitable threshold ∆ and Θ, which can accelerate the inference
and maintain a decent accuracy. In the first pruning stage, we apply a gating function σ(·) to weight
the outputs Hl from the current layer l, before we pass them to the next layer l + 1 like this:

M l(xi) = σ(
sl(xi)−∆l

T
) (8)

Ĥl(xi) = Hl(xi)⊗M l(xi) (9)
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where σ is a sigmoid function, ⊗ is an element-wise multiplication, T is a temperature parameter and
∆l ∈ R is a learnable threshold at layer l. If M l(xi) approaches zero, Ĥl(xi) will become zero as
well. As such, Ĥl(xi) has no impact on the subsequent layers. At this stage, since σ(·) allows the
flow of the back-propagation, both Θ and ∆ can be optimized. In addition, [9] also impose a L1 loss
on M as a regularizer to encourage the pruning operation. Please refer to their paper for the details.

In the second pruning stage, we binarize the mask values at the inference time via:

M l(xi) =

{
1, sl(xi)−∆l > 0.5

0, otherwise
(10)

If sl(xi) is below the threshold ∆l, xi is subject to the removal from layer l and will not contribute
towards the final predictions. We freeze ∆ but update Θ, such that the model can learn to accurately
predict the labels merely conditioning on the retained tokens.

4 Experiments

To examine the effectiveness of the proposed approach, we use five language understanding tasks as
the testbed. We describe our datasets and our experimental setup in the following.

Data Train Test Task

AG news 120K 7.6K topic
Yelp 560K 38K sentiment
QQP 364K 40K paraphrase
MRPC 3.7K 408 paraphrase
RTE 2.5K 277 language inference

Table 1: The statistics of datasets

Datasets The first two tasks are: i) AG news topic identification [25], and ii) Yelp polarity sentiment
classification [25]. The last three are: i) Quora Question Pairs (QQP) similarity detection dataset,
ii) Microsoft Research Paraphrase Corpus (MRPC) dataset and iii) Recognizing Textual Entailment
(RTE) dataset. All datasets are from GLUE benchmark [21] and focus on predicting between a
sentence pair. The datasets are summarized in Table 1.

Datasets BERT DistilBERT LTP FastBERT MP (ours)

AG news 3,-,-,- 3,-,-,- 3,1,2,- 3,-,-,2 3,1,2,2
Yelp 3,-,-,- 3,-,-,- 3,1,2,- 3,-,-,2 3,1,2,2
QQP 5,-,-,-, 5,-,-,-, 5,2,5,- 5,-,-,5 5,2,5,5

MRPC 10,-,-,-, 10,-,-,-, 10,10,5,- 10,-,-,5 10,10,5,5
RTE 10,-,-,-, 10,-,-,-, 10,10,5,- 10,-,-,5 10,10,5,5

Table 2: The number of epochs used for regular training, soft pruning, hard pruning, subclassifiers
training on different datasets. “-" indicates the corresponding stage is inactive.

Experimental setup We compare our approach with four baselines: i) standard BERT [1], ii)
distilBERT [14], iii) learned token pruning (LTP) [9] and iv) FastBERT [10]. Except distilBERT, all
approaches are fine-tuned on uncased BERT-base model (12 layers).

For training, we use a batch size of 32 for QQP, MRPC, and RTE. We set this to 64 for AG news and
Yelp. Since different approaches adopt different training strategies, we unify them as four steps:

1. Regular training: training a model Θ without additional components;
2. Soft pruning: training a model Θ and threshold ∆;
3. Hard pruning: training a model Θ with the binarized mask values;
4. Sub-classifiers training: training sub-classifiers on Equ. (4). For MP, we also activate the

pruning operations.

We report the number of the training epochs of different steps for all approaches in Table 2. Similar
to [9], we vary the threshold of the final layer ∆L from 0.01 to 0.08, and the threshold for ∆l is set to
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∆Ll/L. We search the temperature T in a search space of {1e−5,2e−5,5e−5} and vary λ from 0.001
to 0.2. We use a learning rate of 2e−5 for all experiments. We consider accuracy for the classification
performance and giga floating point operations (GFLOPs) for the speedup.

AG news Yelp QQP MRPC RTE
Acc. GFLOPs Acc. GFLOPs Acc. GFLOPs Acc. GFLOPs Acc. GFLOPs

BERT 94.3 9.0 (1.00x) 95.8 17.2 (1.00x) 91.3 5.1 (1.00x) 85.3 9.2 (1.00x) 68.6 11.2 (1.00x)
distilBERT 94.4 4.5 (2.00x) 95.7 8.6 (2.00x) 90.4 2.6 (2.00x) 84.6 4.6 (2.00x) 58.8 5.6 (2.00x)
LTP 94.3 5.3 (1.72x) 94.7 7.4 (2.32x) 90.6 3.2 (1.60x) 84.8 6.2 (1.48x) 67.8 7.5 (1.50x)
FastBERT 94.3 2.3 (3.97x) 94.8 2.8 (6.18x) 90.7 1.6 (3.20x) 84.3 4.3 (2.13x) 67.6 8.4 (1.33x)
MP (ours) 94.3 1.8 (4.95x) 94.5 2.1 (8.25x) 90.4 1.3 (4.03x) 83.8 3.3 (2.77x) 67.5 6.5 (1.72x)

Table 3: The accuracy and GFLOPs of BERT [1], distilBERT [14], LTP (learned token pruning) [9],
FastBERT [10] and MP (ours) on different datasets. The numbers in parentheses are speedup.

AG news Yelp

τ 0.1 0.5 0.8 0.1 0.5 0.8

FastBERT 3.97x 10.30x 11.95x 3.15x 6.18x 8.84x
MP (ours) 4.95x 10.53x 11.95x 5.35x 8.25x 10.10x

Table 4: Speedup of FastBERT and MP with different τ .

For token pruning approach, previous works [22, 9] have shown that there exits a trade-off between
accuracy and speedup. Thus, we report the performance of models achieving smallest GFLOPs with
at most 1% accuracy drop compared to the BERT baseline. Similarly, the speedup of FastBERT is
also controlled by the halt value τ . We select τ obtaining a on-par accuracy with the token pruning
competitors for the sake of a fair comparison. This selection criterion is applied to MP as well.

Table 3 demonstrates that all approaches experience loss in accuracy, when a fast inference is activated.
Overall, FastBERT is superior to disilBERT and LTP in terms of both accuracy and GFLOPs. Under
the similar accuracy, our approach manages to have a significantly faster inference than FastBERT,
which leads to up to 2.13x extra speedup. We notice that the speedup and accuracy also correlate to the
complexity of tasks and the number of training data. Specifically, for the sentence-pair classification
tasks, since QQP has much more data (c.f., Table 1), it achieves 4.03x speedup with a loss of 1%
accuracy. On the contrary, RTE and MRPC obtain at most 2.77x speedup with the same amount
of accuracy degradation. Under the same magnitude of the training data, as AG news and Yelp are
simpler than QQP, they can gain up to 8.25x speedup after sacrificing 1% accuracy.

Gains over FastBERT In section 3, we have claimed that MP can benefit from both token pruning
and early exiting. Although this claim is evidenced in Table 3, we are interested in investigating
whether such gains consistently hold, when tuning τ to control the speed of the inference. According
to Table 4, MP can drastically boost the speedup of FastBERT, except for an aggressive τ , which will
cause the computation to terminate at the first two layers.

Speedup on sequences with different lengths Intuitively, longer sentences tend to have more
redundant tokens, which can confuse the lower sub-classifiers. Consequently, longer sentences
require more computation before reaching a lower uncertainty u. We bucket the Yelp and AG news
dataset into three categories: i) short sequences (1-35 tokens), ii) middle sequences (35-70 tokens)
and iii) long sequences (>70 tokens). Figure 1 indicates that LTP prefers long sequences, while
FastBERT favors short sequences. Since MP combines the early exiting with the token pruning, it
can significantly accelerate both short and long sequences, compared to the two baselines.

5 Conclusion

In this work, we introduce Magic Pyramid, which can maintain a trade-off between speedup and
accuracy for BERT-based models. Since MP is powered by two outstanding efficiency-encouraging
approaches, it can yield substantially faster inference over the baselines up to additional 2x speedup.
We also found that token pruning and early exiting falls to efficiently handle sequences under certain
length groups. In contrary, such limitations can be combated by MP, thereby our approach can
indiscriminately accelerate inference for every input data (i.e, inference request) regardless of its
length.
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