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Abstract

Time delay neural networks (TDNN) have become ubiquitous for voice biometrics
and language recognition tasks relying on utterance-level speaker- or language-
dependent representations. In this paper, we discuss directions to improve upon
the conventional TDNN architecture to render it more generally applicable. More
specifically, we explore the utility of performing pooling operations across different
levels of the convolutional stack and further propose an approach to efficiently
combine such set of representations. We show that the resulting models are more
versatile, in the sense that a fixed architecture can be re-used across different tasks,
and learned representations are more discriminative. Evaluations are performed
across two settings: (1) two sub-tasks for spoofing attack detection, and (2) three
sub-tasks for spoken language identification. Results show the proposed design
yielding improvements over the original TDNN architecture, as well as other
previously proposed methods.

1 Introduction

Time delay neural networks (TDNN) have been widely employed in speech processing applications,
most notably within the space of voice biometrics. For example, in the x-vector setting [15], TDNNs
yielded strong performance for speaker verification tasks, serving as a front-end to extract utterance-
level representations. TDNNs consist of a sequence of dilated 1-dimensional convolution layers
which operate across the temporal dimension. The convolutional stack is followed by a temporal
pooling layer, which concatenates component-wise first- and second-order statistics over the time
axis. The outputs of the pooling layer are finally passed through two fully-connected layers to yield
outputs corresponding to conditional log-probabilities over the set of training speakers or languages.
The temporal pooling operation is intended to enable the computation of global utterance-level
representations of the audio input and yield a single vector representing an entire sequence of acoustic
features from input signal. From a practical perspective, global representations can be useful for tasks
where the ability to process sequences of varying lengths is required, such as speaker and/or spoken
language identification. However, including a pooling operation within a feed-forward architecture
brings in challenges and limitations, including: (1) Overly specialized architectures: lower-level
(i.e., closer to inputs) or high-level (i.e., closer to outputs) learned representations might be more
or less effective depending on the underlying task/data of interest. For instance, it’s unlikely that
the same type of representation would be useful for tasks such as speaker verification and language
identification, since speaker-dependent cues are generally independent of the underlying phonetics
within a signal, while determining languages does require phonetic information to be salient in
learned representations. Given those variations across tasks, we argue determining the right level
of abstraction of learned representations, mostly via deciding where to perform global pooling
operations, is task-dependent and, as such, requires the design of a specific architecture for each
different task. (2) Ignoring complementary information: TDNNs perform pooling operations only
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Figure 1: Conventional TDNN overview.

after the output of the final convolutional layer, thus global features from other levels of the model are
not explicitly accounted for. Such operation could discard potentially discriminatory information for
downstream tasks. We argue that a solution that simultaneously accounts for pooled features across
different parts of the model has the potential to yield more discriminative learned representations,
resulting in more generalizable models.

In order to address these limitations, we propose to modify the TDNN architecture and compute
the pooling operation independently across the five convolution layers of the model. Moreover,
we propose the use of a self-attentive layer [19] to give the model the ability to select, at training
time, the best combination scheme between features obtained at different levels and to compute a
novel sequence of global vectors as a function of the entire set of representations. Finally, a last
pooling operation is applied on the resulting sequence to yield an utterance-level representation.
The proposed scheme offers the following advantages over conventional TDNNs: (1) Versatility: as
opposed to designing a new architecture for each new task, the proposed architecture introduces a
data-oriented approach that allows for the model to learn which layers provide more discriminative
information for global pooling. As such, a single architecture can be re-used across different tasks, as
will be observed in the evaluation section. (2) Generality: global factors in each layer are explicitly
considered, as opposed to just the last convolutional layer. As such, complementary information
obtained from different layers can be leveraged. We further highlight that such a scheme defines
classes of models that contain simple aggregation mechanisms as particular cases; i.e., simple schemes
such as averaging pooled representations from different levels, or selecting a specific layer can all
be recovered by the proposed model if those are the best solutions for the task/data at hand. (3)
Learnability: The pooling operation across layers acts as skip/residual connections, thus yielding loss
landscapes that are easier to train against [3, 5].

In this paper, we gauge the versatility of the proposed architecture, referred to as multi-level self-
attentive TDNN (ML-TDNN), on two end-to-end tasks: spoken language identification and spoofing
attack detection. In both cases, various sub-tasks corresponding to different types of data and
conditions are considered. Across all such cases, we find evidence supporting the claim that global
information from low-level layers contains complementary information that can be leveraged at later
stages of the model to improve performance.

2 Background and related work

The proposed model builds upon the original TDNN architecture illustrated in Figure 1 and further
detailed in Table 5 in the appendix. In details, an input sequence of length T is denoted as x[1:T ],
where each xi ∈ Rd, i ∈ [T ], represents a feature vector of dimension d (e.g., mel-frequency cepstral
coefficients) at a given time frame. Equivalently, we denote the set of features output by the stack of
convolution layers by y1:T ∈ RD, i ∈ [T ], where D corresponds to the number of output channels
of the last convolutional layer. We refer to those as local descriptors of the overall audio given that
they correspond to features of a relatively short time window. D is set to 1500 in the original model
and to 512 in our case since, as will be discussed, our setting requires local descriptors of matching
dimensionality across the model. The temporal pooling layer, also referred to as statistical pooling,
concatenates element-wise estimates of first- and second-order statistics of the set of local descriptors
across the temporal axis. We thus define the global descriptor V , i.e., the feature vector summarizing
the entire input sequence x[1:T ], by the following:

V = cat[µ(yi), σ(yi)], (1)
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Figure 2: Proposed TDNN with multi-level self-attentive temporal pooling.

where the operator v = cat[v1, v2] concatenates its two arguments v1, v2 ∈ RD such that v ∈ R2D,
and yi are obtained after the last convolution layer. The global descriptor V is finally fed into a
sequence of dense layers to yield the outputs corresponding to log-probabilities over the set of classes
under consideration (e.g., training speakers or languages).

Past work has considered several modifications of the original TDNN architecture in order to improve
performance in tasks such as speaker verification. In [22], for instance, several practical considerations
are evaluated, such as the differences in performance given by applying batch normalization before or
after activation functions are applied. Model variations focusing specifically in the pooling strategy
were proposed, for instance, in [21], where a learnable gating mechanism is employed in order to
assign more or less importance to specific frames prior to pooling. Similarly, a linear layer is used in
[12] to learn how important individual frames are. Those approaches, however, are limited in that
each frame is evaluated by itself, and a better informed pooling strategy should leverage the sequence
structure in order to decide which frames matter more or less.

Alternatively, approaches such as the model discussed in [20] consider higher order statistics during
pooling, but similarly to the base case, only representations from a given layer are used to compute
the overall utterance-level representation used by top layers of the model. Closer to our work is the
approach discussed in [16] where global statistics of different layers are concatenated prior to the
TDNN dense layers close to the outputs. While such direction seems as an improvement compared
to other approaches, given that bottom layers are considered as well, we hypothesize that simply
concatenating low-level representations is sub-optimal in that the sequential nature of such set of
feature vectors is not leveraged. We argue that some type of sequence processing mechanism can
enrich the final pooled vector and yield lower dimensional pooled features, thus saving on parameters
and computations in higher layers. While any sequence model could be used (e.g., RNNs), we focus
on self-attention given its efficiency and ease of training.

3 Proposed Method

Given the conventional TDNN architecture described previously, one can observe that the time
pooling operation performed in the end of the convolutional stack is the only model component
able to summarize the content of the sequence into a global representation. We argue that this is:
(1) too restrictive, as it ignores valuable information available in earlier layers of the model, and
(2) too specific, since different tasks should require designers to search for the right layer where to
apply the pooling operation. As such, we propose a multi-level pooling scheme (c.f. Figure 2 for an
illustration). In this case, we extract a sequence of local descriptors yk[1:T ] for each convolution layer,
i.e., k ∈ [1, 2, ..., 5]. The same temporal pooling operation described above is now performed across
every layer k, thus yielding a sequence of global descriptors denoted V[1:5].

Next, we employ a self-attention layer [19] so that each Vk can be taken into account depending on
how relevant they are in order to result in discriminative representations. In other words, we take
advantage of the depth-wise set of global summaries of the input sequence by including a sequence
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modeling component into the architecture. Such self-attention component, also referred to as scaled
dot product attention, is given by the following:

self-attention(Q,K, V ′) = softmax(
QKT

√
dk

)V ′, (2)

where Q, K, and V ′, denominated queries, keys, and values, respectively, each correspond to a linear
transformation of V[1:5] (assumed to be a matrix of dimension 5×D), i.e.: Q = V[1:5]W

Q, K =

V[1:5]W
K , V ′ = V[1:5]W

V .

In this case, each of the matrices WQ, WK , and WV , have dimension 5× dk and their entries are
treated as learnable parameters. Intuitively, the scaled dot-products QKT

√
dk

define weights indicating
the importance of each element in the sequence for a specific data instance. Finally, we make use
of the multi-head setting and employ the self-attention operation described above multiple times
using independent sets of parameters. As usual, the final sequence is given by a linear projection
of the concatenation of the outputs of each head to the space of dimension dk. The number of
self-attention heads is treated as a hyperparameter, and we empirically found the value of 16 to yield
good results for the evaluation tasks considered herein. It is important to emphasize that even though
the computation cost of self-attention layers scales with the square of the input length, the proposed
model is favoured by the fact that the sequence length is fixed and moderate, as it corresponds to the
depth of the convolutional stack (i.e., 5). Moreover, such layer defines a class of models that is rich
enough to include as particular cases anything ranging from complicated non-linear relationships
between elements to modeling schemes as simple as averaging/selection, depending on what is
needed for the task at hand. However, any alternative sequence modeling layer can be used in this
case yielding variations of the proposed model. We refer to the sequence output by the self-attentive
transformation as A[1:5]. Lastly, in order to combine the set of global descriptors A[1:5] into a single
representation, we make use of a final statistical pooling layer that operates across the depth of the
network, rather than across time. This yields the global descriptor: V = µ(Ak). We then proceed as
usual and feed V into a sequence of fully-connected components leading to the output layer. Training
is carried out so that the parameters of all the described components are learned jointly.

4 Evaluation and Discussion

We perform evaluations and comparisons across a number of tasks aiming to show evidence to
support the following claims: I-A single architecture can be re-used across a set of distinct tasks
while achieving high prediction performance as well as yielding effective representations for open-set
tasks; II-Global features collected from low-level layers contain complementary information that can
be leveraged to improve accuracy. We further remark that, since self-attentive aggregation includes as
particular cases simple schemes such as averaging representations obtained from all layers as well as
selecting specific layers to be used, we focus our computation budget on baseline systems that do not
explicitly use any global summary of low-level representations. To further gauge the effectiveness of
the proposed methods, results are compared with approaches recently reported in the literature.

4.1 Detecting spoofing attacks

The evaluation setting introduced for the ASVspoof 2019 challenge [18] is considered here. In
particular, two independent sub-tasks relative to the detection of two different classes of attacks
are used for evaluation: (1) Logical access attacks: Consisting of synthetic speech created using
both voice conversion and text-to-speech systems, and (2) Physical access attacks: Consisting of
simulated replays of genuine audio clips exhaustively considering varied acoustic conditions such
as three different room sizes, three distances to the microphone, and three levels of reverberation.
Statistics of dataset are shown in Table 1 and further detailed in [18]. We further highlight that a
disjoint set of speakers is used to generate different data partitions and the algorithms make no use of
speaker identity information.

For end-to-end detection of spoofing attacks, binary classifiers are trained following the strategies
discussed in [7]. More specifically, audio features are extracted such that 30 linear frequency
cepstral coefficients [14] (LFCC) stacked with delta and double-delta coefficients are used for logical
access attack detection. For physical access attacks, in turn, product spectra (ProdSpec) [1] with

4



Table 1: Number of genuine and spoofing recordings in training, development, and evaluation
partitions for logical and physical access attacks.

# Speakers
# Recordings

Logical Access Physical Access
Bona fide Spoof Bona fide Spoof

Train 20 2580 22800 5400 48600
Development 20 2548 22296 5400 24300
Evaluation 67 7355 63882 18090 116640

Table 2: Detection performance on the evaluation sets of ASVspoof 2019.
Logical access attacks Physical access attacks

System EER (%) min-tDCF EER (%) min-tDCF

Third party baselines CQCC-GMM [18] 9.57 0.2366 11.04 0.2454
LFCC-GMM [18] 8.09 0.2116 13.54 0.3017

Our baselines

CQCC-GMM 8.91 0.2157 11.16 0.2478
ivector/PLDA 16.55 0.4201 10.18 0.2687
ResNet [10] 6.38 0.1423 1.98 0.0579
TDNN [9] 7.00 0.1653 1.77 0.0597

Proposed ML-TDNN 6.07 0.1327 1.32 0.0470

257 frequency bins are used. Train data is augmented offline following the approach in [9] and
the sampling approach proposed in [7] to deal with unbalanced classes is further employed. The
development data is used for cross-validation during model selection and hyperparameter tuning.
We report performance in terms of the the equal error rate (EER) and the normalized minimum
tandem detection cost function (min-tDCF) [4] (see [18] for a detailed description and motivation for
these evaluation metrics). Lower values of the metrics suggest improved performance. Experimental
results are reported in Table 2 for both the logical and physical access attacks. In addition to the
conventional TDNN approach [9], several other baselines are considered, including the two used
in the ASVspoof 2019 challenge [18]. In particular, methods based on ResNets [3] trained on top
of the same features, GMM-based classifiers trained with LFCC or constant-Q cepstral coefficients
(CQCC), and a system based on the i-vector/PLDA combination [2, 13] are explored. As can be
seen, the proposed ML-TDNN reduced EER and min-tDCF across both attack methods, thus better
separating attacks and genuine samples. This can be due to an induced more well-conditioned loss
landscape and/or access to global information in early layers close to the original data.

4.2 Spoken language identification

For the spoken language identification task, we consider the data and evaluation conditions introduced
for the AP18-OLR Challenge discussed in [17]. The data, whose statistics are summarized in Table
3, correspond to audio from ten languages, and the following evaluation conditions were defined:
I-Short-duration: Considers only test recordings with duration lower than 1 second, II-Confusing
languages: Test trials correspond to pairs of languages known to be to difficult to distinguish,
i.e., Cantonese, Korean, and Mandarin, and III-Unseen languages: Test recordings correspond to
languages not observed within the training sample. A total of 214560, 22071, and 404160 test trials
(i.e., a pair claimed language/test recording) were made available for each of the evaluation conditions
discussed above. We train models using the multi-task method described in [8], where a metric-
learning approach is used along with a standard maximum likelihood training strategy. The training
loss is minimized using stochastic gradient descent and the same learning rate schedule discussed in
[19] is employed. Evaluation is performed under the end-to-end setting so that predictions are made
by directly forwarding data through the model, without using any external classifier. We do so by
following the approach discussed in [6] where the output unit corresponding to the claimed class in a
trial is used as a verification score. Regarding data preparation, pre-processing steps follow those
discussed in [6].

Results are reported in Table 4 in terms of EER and the average cost performance (Cavg). Details
about both metrics can be found in [17]. We highlight that the reported results were computed using
the official scripts released for the AP18-OLR challenge. We further remark that we report results
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Table 3: Language identification dataset statistics.

Language Train Evaluation
# Speakers Utt./Speaker # Speakers Utt./Speaker

Cantonese 24 320 6 300
Mandarim 24 300 6 300
Indonesian 24 320 6 300
Japanese 24 320 6 300
Russian 24 300 6 300
Korean 24 300 6 300

Vietnamese 24 300 6 300
Kazakh 86 50 86 20
Tibetan 34 330 34 50
Uyghur 353 20 353 5

Table 4: Identification performance for the three evaluation conditions considered on the AP18-OLR
challenge.

Short-duration Confusing Unseen
EER (%) Cavg EER (%) Cavg EER (%) Cavg

i-vector+Cosine [11] 18.02 0.178 10.71 0.107 7.77 0.058
i-vector+PLDA [11] 17.50 0.174 10.66 0.106 7.51 0.052
ResNet (Stats.) [11] 10.85 0.112 3.63 0.036 4.23 0.020

ResNet (Attention) [11] 10.97 0.111 4.34 0.043 4.58 0.023
ResNet (LSTM) [11] 11.76 0.115 3.34 0.032 4.00 0.021

TDNN 13.16 0.126 4.30 0.058 4.80 0.036
ML-TDNN (A) 11.17 0.109 3.23 0.033 4.20 0.023
ML-TDNN (B) 14.68 0.138 2.80 0.029 3.53 0.016

ML-TDNN (A+B) 10.23 0.101 2.42 0.025 3.06 0.015

obtained by two independent models, indicated by ML-TDNN (A) and (B) in Table 4, where each
model relied on different validation datasets to tune their hyperparamaters. While model (A) used only
the short-duration partition of the development data, model (B) used the complete development set. As
can be seen, an apparent trade-off is found regarding the performance on the short-duration condition
when using model (A), i.e., while using the short-duration development data improved accuracy under
this condition, it degraded the performance on the other tasks. For practical implementations, we
recommend using both models (A) and (B) in parallel and mixing their scores, as indicated by (A+B).
Lastly, the proposed ML-TDNN method is shown to outperform the conventional TDNN across all
three evaluation conditions. In fact, with the exception of the short-duration condition, the proposed
ML-TDNN outperformed all benchmarks, including those relying on ResNets with recurrent pooling
[11], which considers a complex training strategy involving pre-training steps of convolutional layers,
shown to be important for short-duration conditions.

5 Conclusion

We introduced a variation of the TDNN architecture in which temporal pooling operations are
performed across all layers of the convolutional stack rather than only at its end. Across the different
tasks and datasets considered, results are consistent in showing the ML-TDNN to outperform various
benchmarks that use global features obtained from a single layer, thus highlighting that complementary
speaker/language-dependent information can be efficiently leveraged from low-level layers close to
inputs. Moreover, baselines in each considered task consisted of models specialized to that particular
task, which suggests the ML-TDNN is general enough to perform at least as well as specialized
architectures across the considered evaluation conditions. As future work, we intend to evaluate the
proposed model when it is used as an embedding encoder under the speaker verification setting.
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A TDNN Architecture details

Table 5: Standard TDNN architecture. T indicates the duration of features in number of frames and d
the feature vector dimensionality. Batch normalization is further employed after each layer except
temporal pooling.

Layer Input Dimension Output dimension
Conv1d+ReLU d × T 512 × T
Conv1d+ReLU 512 × T 512 × T
Conv1d+ReLU 512 × T 512 × T
Conv1d+ReLU 512 × T 512 × T
Conv1d+ReLU 512 × T 1500 × T

Temporal Pooling 1500 × T 3000
Linear+ReLU 3000 512
Linear+ReLU 512 512
Linear+ReLU 512 # classes

9


	Introduction
	Background and related work
	Proposed Method
	Evaluation and Discussion
	Detecting spoofing attacks
	Spoken language identification

	Conclusion
	TDNN Architecture details

