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Abstract

Recent advances in neural text-to-speech allowed to build multi-speaker systems
capable of performing high-fidelity speech generation. However, it is often desir-
able to be able to add a new voice to a text-to-speech system based on only a few
recordings. In this work, we study several approaches to the design of on-device
voice cloning. Starting from a multi-speaker TTS system we improve its quality
for a target speaker by fine-tuning the feature generation module on a small speech
sample. We compare the performance of a feature generation module based on
conventional Tacotron2 with step-wise monotonic attention with the ones based
on Non-attentive Tacotron and Glow-TTS. We show that Non-attentive Tacotron
significantly outperforms the attention-based model and demonstrate that a com-
pact on-device TTS system of good quality can be obtained using only 1 minute
of adaptation data with no more than 200 iterations of SGD corresponding to less
than 1 hour of on-device training time on a consumer mobile phone.

Index Terms: Text-to-speech, voice cloning, few-shot learning, on-device learning

1 Introduction

Neural text-to-speech (TTS) systems have become very popular among the speech community during
the last decade [Shen et al., 2018, van den Oord et al., 2016, Ren et al., 2019, 2020]. Modern
TTS models can synthesize natural human voice in both single-speaker [Shen et al., 2018], and
multi-speaker scenarios [Ren et al., 2019] as long as enough training data is available. When the
volume of the training data for a speaker is limited the problem of adding his or her voice to a TTS
system can be solved by means of voice cloning (VC) techniques i.e. speaker encoding and speaker
adaptation. Below we refer to speaker encoding and speaker adaptation based approaches as zero-shot
and few-shot VC correspondingly.

Both approaches proved to be effective in previous studies e.g. [Jia et al., 2018, Arik et al., 2018]
where a neural network for speaker verification was used as encoder network for VC. In [Arik et al.,
2018] it was shown that fine-tuning of the whole baseline zero-shot model on a small amount of data
led to considerable improvement in both sound quality and speaker similarity. Later, in [Chen et al.,
2021] FastSpeech2 [Ren et al., 2020] model was used as a backbone of a voice cloning system based
on speaker adaptation with only 5k speaker-specific parameters.

On-device implementation of VC presents additional challenges to both TTS backbone models [Valin
and Skoglund, 2019, Popov et al., 2020b,a] and cloning algorithms because the hardware of modern
mobile phones and wearable devices is still not powerful enough to allow running a full-fledged
training procedure. The goal of this work is to propose an efficient voice cloning solution capable
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of working on-device. We start with the existing on-device TTS system based on Tacotron2 and
LPCNet [Popov et al., 2020a] and build a zero-shot and a few-shot VC systems based on this pipeline
in the same manner as [Jia et al., 2018] and [Tan et al., 2021] using 1 minute of adaptation data.
We study approaches to development of a baseline zero-shot system and find parameters of model
adaptation which are optimal for on-device training. On-device model adaptation may be useful
in such scenarios as on-device speech-to-speech translation preserving user’s voice. However, we
should also admit that broad access to on-device voice cloning technology may potentially be used
with malicious purposes such as fraudulent calls.

The paper structure is as follows: in Section 2 we describe models used in our pipelines; in Section 3
we describe our experimental setup; in Section 4 human evaluation results are discussed; we conclude
in Section 5.

2 Voice cloning models

LPCNet In all experiments described below we use LPCNet [Valin and Skoglund, 2019] as a
vocoder. In contrast to other popular neural vocoders [van den Oord et al., 2016, Kalchbrenner
et al., 2018, Kumar et al., 2019, Kong et al., 2020], this RNN-based autoregressive model predicts
excitation signal et which is then processed by linear-prediction filter outputting final speech samples
st. Due to relative simplicity of predicting et LPCNet is capable of generating speech of good quality
having a small number of parameters (1.4m) and providing highest efficiency on CPU. Despite having
such a small model LPCNet can serve as a universal vocoder [Valin and Skoglund, 2019]. For the
experiments described further we trained a multi-speaker LPCNet on LibriSpeech dataset [Panayotov
et al., 2015].

Multi-speaker Tacotron2 We used a modified version of the small Tacotron2 model with 18m
parameters described in [Popov et al., 2020a] but with additional 256-dimensional speaker embedding
input. The model has decoder with 3-layer LSTM of 512 units and a decreased 4-layer postnet with
kernel sizes [5, 5, 5, 5]. In our experiments we used model with Stepwise Monotonic Attention (SMA)
[He et al., 2019]. We took the same approach to the baseline zero-shot model as [Jia et al., 2018] with
the same speaker verification model used as speaker encoder. Our version of Tacotron2 predicted
normalized acoustic features which were then denormalized and sent to LPCNet. Normalization was
done by subtracting mean and dividing by standard deviation calculated over training dataset.

Multi-speaker Non-attentive Tacotron Non-attentive Tacotron (NAT) [Shen et al., 2020] is a
feature generation model based on Tacotron2 making use of duration predictor module aimed at
improving robustness of the generation process ([Ren et al., 2019, Yu et al., 2020, Kim et al., 2020]).
The model is trained using a combination of the feature reconstruction loss Lfeat borrowed from
Tacotron2 and duration prediction loss Ldur which is a mean squared error between predicted and
golden durations d and d∗: Ldur = 1

N ‖d− d
∗‖22, where N is an input sequence length.

In order to make the model more suitable for on-device implementation we decreased the number
of parameters in all modules of Non-attentive Tacotron compared to the original version. Encoder
2-layer Bi-LSTM with 512 units was replaced with 1-layer Bi-LSTM with 256 units. The size of
Bi-LSTM in the duration predictor was decreased to 256 from 512. Decoder 2-layer LSTM with
1024 units was replaced with 3-layer LSTM with 512 units. For the Postnet we used 4-layer neural
network with 1d-convolutions with 256 channels and kernel sizes [5, 3, 3, 3]. Both Tacotron2 and
Non-attentive Tacotron generated 3 feature outputs per step. For multi-speaker version of NAT we
used the same approach as for Tacotron2 described in Section 2

Multi-speaker Glow-TTS The third feature generation model included in our tests was Glow-TTS
[Kim et al., 2020]. We considered Glow-TTS as a potential alternative to Non-attentive Tacotron
because training Glow-TTS does not need golden durations. This is an important advantage for
on-device training.

Glow-TTS is a flow-based [Kingma and Dhariwal, 2018] architecture making use of Monotonic
Alignment Search (MAS). The main modules of Glow-TTS are text encoder, flow-based decoder and
duration predictor. During training encoder fenc maps input text c into a sequence of parameters of a
Gaussian distribution (µi, σi) while the decoder fdec maps the target spectrogram x into a sequence
of latent variables zj . The alignment A(i, j) between latent variables zj and predicted parameters
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(µi, σi) is calculated via Monotonic Alignment Search. Its output is also used for training the duration
predictor fdur. During inference the duration predictor controls the number of samples drawn from
each distribution N (z;µi, σi) and the decoder carries out inverse transform of the sampled latents
zj . We modify Glow-TTS to output normalized acoustic features for LPCNet and to work with the
input speaker embedding generated by the speaker encoding network as described above. Since
Glow-TTS is designed to have a duration predictor as a separate module, we also make this duration
predictor conditioned on speaker embedding. We should note though that we did not try to implement
a compact version of Glow-TTS and did not change any parameters including temperature.

Feature enhancement with GAN We also considered an alternative approach based on post-
filtering Tacotron2 outputs with Generative Adversarial Network [Goodfellow et al., 2014] aimed at
improving sound quality and similarity in the zero-shot scenario. To ensure both good sound quality
and speaker similarity and drawing inspiration from the architectures widely used in the field of voice
conversion [Kaneko et al., 2019, Kameoka et al., 2018] we implemented GAN consisting of three
networks: generator G, discriminator D and classifier C.

We choose to train Least Squares GAN [Mao et al., 2017] because this variant is known to be quite
stable during training. Discriminator and generator adversarial losses are thus given by

LD =
1

2
Et∼T,x∼Pt

[(1−D(e(t), x))2] +
1

2
Et∼T,x∼Qt

[D(e(t), G(e(t), x))2] (1)

Ladv
G =

1

2
Et∼T,x∼Qt [(1−D(e(t), G(e(t), x)))2] (2)

where Pt denotes the distribution of all real acoustic features of the speaker t, Qt is the distribution
of all acoustic features generated by the Tacotron2 model with target speaker t, T is the set of all
speakers in our training dataset and e(·) denotes the operation of extracting a speaker embedding
for the target speaker t ∈ T with pretrained speaker encoder (see Section 2). Both generator G
and discriminator D are conditioned on the target speaker embedding e(t). Speaker similarity for
training set speakers is imposed by the speaker loss Lspk

G coming from the classifier C operating
on speech segments of 128 frames and estimating the probabilities {Ct(x)}t∈T that this segment is
pronounced by the speaker t. The classifier is trained by minimizing cross-entropy loss. We also
use identity mapping loss Lid

G [Kaneko et al., 2019] in order to prevent the generator from losing
linguistic information.

Figure 1: Classifier architecture. K is the kernel size, S is the stride, P is the zero padding, C is the
number of output channels, T is the output length and N is the number of speakers in the training set.

The generator and discriminator architectures are mostly borrowed from [Kaneko et al., 2019] except
that we use only 1D convolution blocks and a target speaker embedding instead of source and target
speaker codes. The architecture of the classifier is given at Figure 1. All the networks utilize Instance
Normalization [Ulyanov et al., 2016] and Gated Linear Unit (GLU) non-linearity [Dauphin et al.,
2017].

3 Experiments

We carried out two series of subjective evaluation tests. The goal of the first testing was to select
the models with the best performance on in-field data. For this experiment we used a private dataset
consisting of fragments of radio shows and dialogues extracted from video clips of varying length
and acoustic environment. For the second experiment aimed at estimating the optimal number
of fine-tuning steps we used public data (10 speakers from LibriTTS) because we also wanted to
compare our model with AdaSpeech [Chen et al., 2021].

3



As mentioned in Section 2, we used the same vocoder in all the experiments. Since our main goal
was to enable on-device voice cloning, we choose LPCNet because of its good quality and high
efficiency on CPU. We trained multi-speaker LPCNet on LibriSpeech subsets train-clean-100 and
train-clean-360 with clean recordings. The recordings were preprocessed by a denoising algorithm.

Baseline zero-shot models We start with zero-shot models based on Tacotron2, Non-attentive
Tacotron and Glow-TTS. All zero-shot models are trained on a combination of data from LibriTTS
[Zen et al., 2019] and VCTK [Yamagishi et al., 2019]. To ensure quality of the training data and
robustness of the attention we split long recordings into shorter ones and removed speakers with less
than 5 minutes of data. We also removed leading and trailing silence for VCTK recordings. After
filtering out speakers with noisy records and insufficient amount of data we had 664 speakers from
LibriTTS and 105 speakers from VCTK. For all models we used speaker embedding size 256. For
the Glow-TTS model we used 12 flow-blocks for decoder with 192 channels.

As our initial hypothesis was that the higher amount of speakers can be beneficial for similarity while
lower sound quality could be compensated by post-filtering we also prepared an additional Tacotron2
model trained on the same LibriSpeech data as was used for training LPCNet. However, in this case
we also filtered speakers with less than 5 minutes of data. After cleaning, the dataset contained data
for 1100 speakers. This model was used for testing capabilities of the GAN-based filter. Below we
refer to this model as TT2-LS.

Model with post-filtering To train the GAN-based post-filter we used the preprocesessed Lib-
riSpeech data described above and a pretrained classifier network C with accuracy 82%. The
generator network did post-processing of the recordings synthesized by TT2-LS. The whole GAN was
trained for 1000k iterations in a standard manner. Hyperparameters λcls = 0.01 and λid = 10.0 were
found to perform best. During the experiments we found that the generator is slightly unstable when
processing some frames in the very beginning and in the very end of an utterance, so we do not apply
post-filtering to the first and the last 10 frames. Also we replaced pitch-related features produced by
the generator with those initially generated by the Tacotron2 because otherwise synthesized speech
had unnatural prosody.

Model adaptation For the first experiment we collected a test set consisting of recordings made by
4 male and 6 female speakers. Test data for three of these speakers were parts of publicly available
TTS datasets (Nancy [King and Karaiskos, 2011] and two speakers p280 and p315 from held-out
VCTK dataset) while the remaining part contained small excerpts of radio programs or speech
recordings extracted from video clips. For the second experiment we took 10 speakers from LibriTTS
not used for training of the zero-shot baseline models.

The zero-shot models used speaker embeddings extracted from randomly chosen short target speaker
recordings while the few-shot models were fine-tuned on few randomly chosen target speaker
recordings with total duration of 1 minute. In the latter case, we averaged speaker embeddings
extracted from all adaptation recordings. We also added 1 minute of recordings made by another
speaker during adaptation of Tacotron2-based models as it improved attention stability. Golden
durations for NAT were generated with Montreal Forced Aligner [McAuliffe et al., 2017] software.
During adaptation of Tacotron2 only Decoder and Postnet modules were updated. For NAT models
also Duration predictor was fine-tuned.

Listening tests In the first experiment we assessed quality of voice cloning solutions by carrying
out listening tests. We asked the experts to estimate three aspects: speaker similarity, sound quality
and overall naturalness of the synthesized speech. Five-point scale was used for estimating sound
quality and naturalness while speaker similarity was evaluated on four-point scale. Each audio was
assessed by 5 participants to ensure reliability of our results. Length of the text input varied from
several words to several sentences (up to 40 words in total for each text input). Every VC model
synthesized 20 speech samples with each of 10 voices.

In the second experiment we evaluated 5-point scale Mean Opinion Score (MOS) and 4-point scale
similarity score with step 0.5. Each model synthesized 5 sentences from LibriTTS with each of 10
voices. Each utterance was assessed by 15 Master assessors. Because Glow-TTS and the model with
GAN-based post-filter performed worse in the first experiments only Tacotron2 and Non-attentive
Tacotron were included into the second testing.
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Speech samples used in subjective listening tests are available at https://fsvc-on-device.
github.io.

4 Results

Table 1 shows the results of the first subjective evaluation. TT2-LS and TT2-LS-GAN are the zero-
shot Tacotron2 models trained on LibriSpeech data but in the latter case the output recordings are
post-processed by the GAN-based post-filter. The number after the hyphen in the model name stands
for the number of iterations of the adaptation procedure so 0 means a baseline zero-shot model. We
chose the number of training iterations after which the models generated the best sound quality in our
preliminary experiments.

VC model Sim. Nat. Sound

TT2-LS 2.20 2.57 2.67
TT2-LS-GAN 2.32 2.97 3.14

TT2-0 2.47 2.99 3.38
TT2-1200 3.05 3.71 3.30

GlowTTS-0 2.09 2.72 2.77
GlowTTS-600 2.27 2.87 3.03

NAT-0 2.98 4.01 3.72
NAT-200 3.15 3.84 3.66

Table 1: Speaker similarity (‘Sim”), nat-
uralness (“Nat.”) and sound quality
(“Sound”) of VC models.

VC model MOS Similarity

TT2-0 2.21± 0.08 2.3± 0.07
TT2-200 2.88± 0.08 2.78± 0.07

TT2-1200 3.19± 0.08 2.94± 0.07
TT2-1800 3.18± 0.08 2.94± 0.06

NAT-0 3.29± 0.08 2.86± 0.07
NAT-100 3.57± 0.08 3.11± 0.07
NAT-200 3.71± 0.07 3.21± 0.06
NAT-800 3.43± 0.08 3.12± 0.07

GT 4.46± 0.06 3.64± 0.05
GT-resynth 3.77± 0.05 3.32± 0.06

Table 2: Mean Opinion Score (“MOS”) and Similarity
of VC models.

Table 1 demonstrates that the adapted models consistently outperform their zero-shot counterparts in
terms of similarity and that Tacotron2 and Non-attentive Tacotron give better performance than Glow-
TTS. Surprisingly, in this experiment the zero-shot version of Non-attentive Tacotron performed
better than the adapted one in terms of speech quality. During analysis we found that the adapted NAT
models had issues with tempo for some speakers. Also we can see that GAN-based post-filtering
clearly improves baseline TT2-LS model. In particular, it improves speaker similarity either because
of introducing classifier to GAN framework or due to the correlation between speaker similarity and
overall speech quality. However, despite the fact that TT2-LS-GAN model was trained on a dataset
with more speakers, experimental results do not allow us to conclude that it is any better than TT2-0
in terms of speaker similarity.

Few-shot adaptation of multi-speaker Glow-TTS model was problematic because of loss blowing up
on early iterations so in some cases we had to do preliminary fine-tuning of two final (in reverse mode)
layers of the decoder freezing the rest of the model. Eventually the overall quality of models for
different speakers was uneven and the worst models had considerable pronunciation problems. The
reason for such problems can be both difficulties of the alignment training without golden durations
and unstable flow-based decoder.

Table 2 shows the results of the subjective evaluation of different checkpoints of Non-attentive
Tacotron and Tacotron2 during speaker adaptation. NAT models clearly outperform Tacotron2.
Surprisingly, even non-adapted zero-shot NAT model has higher MOS than the best adapted Tacotron2
model TT2-1800. This can be partly explained by the fact that low MOS correlates well with errors
in speech tempo and sonic artifacts (see Figure 2). However, in contrast to the previous experiment
zero-shot NAT had more issues with tempo than the adapted models which suggests that stability
of the duration predictor varies across speakers. We also see that 200 iterations of NAT adaptation
are enough to obtain the quality comparable to the recordings resynthesized from ground truth
features. On the other hand the considerable quality gap between the ground truth recordings and the
resynthesized ones clearly indicates that the universal LPCNet vocoder is a serious quality bottleneck
of the whole pipeline. On the other hand overall MOS score is comparable to the one reported in
[Chen et al., 2021].

On-device adaptation The results of on-device adaptation performance of NAT model are shown
in Table 3. We tested 3 implementations of the training algorithm. For all versions we used
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Figure 2: Typical errors per model. Subjective evaluation by experts (25 phrases, 10 assessors). All
models are adapted to the same speaker from LibriTTS. zsl stands for non-adapted zero-shot models;
fsl-N stands for models fine-tuned on the target speaker data for N iterations.

Table 3: On-device training performance on Kirin 980 (2 threads ARM A76 CPU). Training pa-
rameters: minibatch size: 11, max. input length: 70 characters, Adam optimizer; stopping at
loss=1.25

Implementation Max. RAM Fine-tuning time Power consumption

FP32 800MB 1.6h 2000 mAh
MPv1 492MB 1.3h 1700 mAh
MPv2 640MB 0.9h 1700 mAh

BLAS-Enhance module from BOLT library [BOLT Library, 2020] as a mathematical backend.
The baseline non-optimized implementation with full-precision calculations (FP32) reached a peak
performance of 18 sec/it with 800 MB maximum memory consumption. Total adaptation time with
200 iterations of Adam optimizer reached 1.6h because of CPU throttling. As we could not achieve
stable convergence in half-precision mode we used mixed precision calculations with loss function
calculated in fp32 while all other operations were carried out in fp16 mode. Moreover, for the
versions with mixed precision we had to increase the number of iterations. For these models we
chose the early stopping criterion: the adaptation stopped when loss reached the same value as FP32
model after 200 iterations (L = 1.25). For further optimization we fused all operations inside the
LSTM cell into one integral function (MPv1) and then all calls of the LSTM function for each time
step into a single function (MPv2). We also used master copy of weights technique [P. Micikevicius,
2017] in MPv2 implementation. Our best model MPv2 achieved a peak performance of 11 sec/it.
with 55 mins total training time. We observed no quality degradation compared to the baseline FP32
version. Inference time was comparable to the pipeline described in [Popov et al., 2020a].

5 Conclusion

In this work we have investigated and thoroughly compared various voice cloning techniques. We
modified our current on-device TTS pipeline to be able to adapt to unseen voices both in zero-shot and
few-shot manner. Extensive human evaluation demonstrated that the model making use of duration
predictor trained on golden durations performs better and adapts faster to unseen voices. This model
clearly outperforms attention-based Tacotron2 and Glow-TTS which is capable of training without
explicit ground truth alignment. We also showed that despite the fact that post-processing can improve
quality of the synthesized speech in some cases the same or better performance may be obtained
by means of filtering out low-quality recordings from the training data. Finally, we implemented
on-device training of our best performing voice cloning model and showed that it is possible to adapt
TTS system to unseen voices using only 1 minute of adaptation data. The whole on-device voice
cloning pipeline requires less than 1 hour of mobile CPU training and results in TTS models of
reasonable quality.
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